Spaces:
Running
Running
import argparse | |
import sys | |
import torch | |
import json | |
from multiprocessing import cpu_count | |
global usefp16 | |
usefp16 = False | |
def use_fp32_config(): | |
usefp16 = False | |
device_capability = 0 | |
if torch.cuda.is_available(): | |
device = torch.device("cuda:0") # Assuming you have only one GPU (index 0). | |
device_capability = torch.cuda.get_device_capability(device)[0] | |
if device_capability >= 7: | |
# usefp16 = True | |
# for config_file in ["32k.json", "40k.json", "48k.json"]: | |
# with open(f"configs/{config_file}", "r") as d: | |
# data = json.load(d) | |
# if "train" in data and "fp16_run" in data["train"]: | |
# data["train"]["fp16_run"] = True | |
# with open(f"configs/{config_file}", "w") as d: | |
# json.dump(data, d, indent=4) | |
# print(f"Set fp16_run to true in {config_file}") | |
# with open( | |
# "trainset_preprocess_pipeline_print.py", "r", encoding="utf-8" | |
# ) as f: | |
# strr = f.read() | |
# strr = strr.replace("3.0", "3.7") | |
# with open( | |
# "trainset_preprocess_pipeline_print.py", "w", encoding="utf-8" | |
# ) as f: | |
# f.write(strr) | |
# else: | |
# for config_file in ["32k.json", "40k.json", "48k.json"]: | |
# with open(f"configs/{config_file}", "r") as f: | |
# data = json.load(f) | |
# if "train" in data and "fp16_run" in data["train"]: | |
# data["train"]["fp16_run"] = False | |
# with open(f"configs/{config_file}", "w") as d: | |
# json.dump(data, d, indent=4) | |
# print(f"Set fp16_run to false in {config_file}") | |
# with open( | |
# "trainset_preprocess_pipeline_print.py", "r", encoding="utf-8" | |
# ) as f: | |
# strr = f.read() | |
# strr = strr.replace("3.7", "3.0") | |
# with open( | |
# "trainset_preprocess_pipeline_print.py", "w", encoding="utf-8" | |
# ) as f: | |
# f.write(strr) | |
pass | |
else: | |
print( | |
"CUDA is not available. Make sure you have an NVIDIA GPU and CUDA installed." | |
) | |
return (usefp16, device_capability) | |
class Config: | |
def __init__(self): | |
self.device = "cuda:0" | |
self.is_half = True | |
self.n_cpu = 0 | |
self.gpu_name = None | |
self.gpu_mem = None | |
( | |
self.python_cmd, | |
self.listen_port, | |
self.iscolab, | |
self.noparallel, | |
self.noautoopen, | |
self.paperspace, | |
self.is_cli, | |
) = self.arg_parse() | |
self.x_pad, self.x_query, self.x_center, self.x_max = self.device_config() | |
def arg_parse() -> tuple: | |
exe = sys.executable or "python" | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--port", type=int, default=7865, help="Listen port") | |
parser.add_argument("--pycmd", type=str, default=exe, help="Python command") | |
parser.add_argument("--colab", action="store_true", help="Launch in colab") | |
parser.add_argument( | |
"--noparallel", action="store_true", help="Disable parallel processing" | |
) | |
parser.add_argument( | |
"--noautoopen", | |
action="store_true", | |
help="Do not open in browser automatically", | |
) | |
parser.add_argument( # Fork Feature. Paperspace integration for web UI | |
"--paperspace", | |
action="store_true", | |
help="Note that this argument just shares a gradio link for the web UI. Thus can be used on other non-local CLI systems.", | |
) | |
parser.add_argument( # Fork Feature. Embed a CLI into the infer-web.py | |
"--is_cli", | |
action="store_true", | |
help="Use the CLI instead of setting up a gradio UI. This flag will launch an RVC text interface where you can execute functions from infer-web.py!", | |
) | |
cmd_opts = parser.parse_args() | |
cmd_opts.port = cmd_opts.port if 0 <= cmd_opts.port <= 65535 else 7865 | |
return ( | |
cmd_opts.pycmd, | |
cmd_opts.port, | |
cmd_opts.colab, | |
cmd_opts.noparallel, | |
cmd_opts.noautoopen, | |
cmd_opts.paperspace, | |
cmd_opts.is_cli, | |
) | |
# has_mps is only available in nightly pytorch (for now) and MasOS 12.3+. | |
# check `getattr` and try it for compatibility | |
def has_mps() -> bool: | |
if not torch.backends.mps.is_available(): | |
return False | |
try: | |
torch.zeros(1).to(torch.device("mps")) | |
return True | |
except Exception: | |
return False | |
def device_config(self) -> tuple: | |
if torch.cuda.is_available(): | |
i_device = int(self.device.split(":")[-1]) | |
self.gpu_name = torch.cuda.get_device_name(i_device) | |
if ( | |
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) | |
or "P40" in self.gpu_name.upper() | |
or "1060" in self.gpu_name | |
or "1070" in self.gpu_name | |
or "1080" in self.gpu_name | |
): | |
print("Found GPU", self.gpu_name, ", force to fp32") | |
self.is_half = False | |
else: | |
print("Found GPU", self.gpu_name) | |
use_fp32_config() | |
self.gpu_mem = int( | |
torch.cuda.get_device_properties(i_device).total_memory | |
/ 1024 | |
/ 1024 | |
/ 1024 | |
+ 0.4 | |
) | |
if self.gpu_mem <= 4: | |
with open("trainset_preprocess_pipeline_print.py", "r") as f: | |
strr = f.read().replace("3.7", "3.0") | |
with open("trainset_preprocess_pipeline_print.py", "w") as f: | |
f.write(strr) | |
elif self.has_mps(): | |
print("No supported Nvidia GPU found, use MPS instead") | |
self.device = "mps" | |
self.is_half = False | |
use_fp32_config() | |
else: | |
print("No supported Nvidia GPU found, use CPU instead") | |
self.device = "cpu" | |
self.is_half = False | |
use_fp32_config() | |
if self.n_cpu == 0: | |
self.n_cpu = cpu_count() | |
if self.is_half: | |
# 6G显存配置 | |
x_pad = 3 | |
x_query = 10 | |
x_center = 60 | |
x_max = 65 | |
else: | |
# 5G显存配置 | |
x_pad = 1 | |
x_query = 6 | |
x_center = 38 | |
x_max = 41 | |
if self.gpu_mem != None and self.gpu_mem <= 4: | |
x_pad = 1 | |
x_query = 5 | |
x_center = 30 | |
x_max = 32 | |
return x_pad, x_query, x_center, x_max | |