Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
# Load the model and tokenizer | |
model_name = "KevSun/Personality_LM" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# Function to predict personality traits | |
def predict_personality(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model(**inputs) | |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
labels = ["Introverted", "Extroverted", "Open", "Agreeable", "Conscientious", "Neurotic"] | |
predictions = {label: prob.item() for label, prob in zip(labels, probs[0])} | |
return predictions | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=predict_personality, | |
inputs=gr.Textbox(lines=2, placeholder="Enter a sentence here..."), | |
outputs=gr.Label(), | |
title="Personality Analyzer", | |
description="Enter a sentence and get a prediction of personality traits." | |
) | |
# Launch the Gradio app | |
interface.launch() |