File size: 3,792 Bytes
6efc195
 
 
 
 
 
 
 
 
 
abc4840
 
e08d8b4
9c7aa2c
 
 
 
 
 
 
 
 
 
e08d8b4
 
136c793
 
 
 
 
6efc195
136c793
 
 
 
6efc195
 
 
 
 
 
e08d8b4
6efc195
 
 
 
 
 
 
e08d8b4
6efc195
 
 
 
 
 
 
 
e08d8b4
 
 
6efc195
 
e08d8b4
 
 
 
 
3898b4e
e08d8b4
 
6efc195
e08d8b4
6efc195
 
e08d8b4
6efc195
 
 
 
 
e08d8b4
 
 
 
 
 
 
 
 
 
 
6efc195
e08d8b4
 
 
 
6efc195
 
 
 
 
 
e08d8b4
6efc195
 
e08d8b4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
from PIL import Image
from IPython.display import display
import torch as th

from glide_text2im.download import load_checkpoint
from glide_text2im.model_creation import (
    create_model_and_diffusion,
    model_and_diffusion_defaults,
    model_and_diffusion_defaults_upsampler
)
has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')
# a base model.
options = model_and_diffusion_defaults()
options['use_fp16'] = has_cuda
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
model, diffusion = create_model_and_diffusion(**options)
model.eval()
if has_cuda:
    model.convert_to_fp16()
model.to(device)
model.load_state_dict(load_checkpoint('base', device))
print('total base parameters', sum(x.numel() for x in model.parameters()))

# Create an upsampler model.
options_up = model_and_diffusion_defaults_upsampler()
options_up['use_fp16'] = has_cuda
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
model_up, diffusion_up = create_model_and_diffusion(**options_up)
model_up.eval()
if has_cuda:
    model_up.convert_to_fp16()
model_up.to(device)
model_up.load_state_dict(load_checkpoint('upsample', device))
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
def show_images(batch: th.Tensor):
    """ Display a batch of images inline. """
    scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
    reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
    display(Image.fromarray(reshaped.numpy()))
# Sampling parameters
prompt = ""
batch_size = 1
guidance_scale = 3.0

# Tune this parameter to control the sharpness of 256x256 images.
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
upsample_temp = 0.997
import gradio as gr
def generate_image_from_text(prompt):
    # Set the prompt text
    prompt = prompt

    ##############################
    # Sample from the base model #
    ##############################

    # Create the text tokens to feed to the model.
    tokens = model.tokenizer.encode(prompt)
    tokens, mask = model.tokenizer.padded_tokens_and_mask(
        tokens, options['text_ctx']
    )

    # Create the classifier-free guidance tokens (empty)
    full_batch_size = batch_size * 2
    uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
        [], options['text_ctx']
    )

    # Pack the tokens together into model kwargs.
    model_kwargs = dict(
        tokens=th.tensor(
            [tokens] * batch_size + [uncond_tokens] * batch_size, device=device
        ),
        mask=th.tensor(
            [mask] * batch_size + [uncond_mask] * batch_size,
            dtype=th.bool,
            device=device,
        ),
    )

    # Create a classifier-free guidance sampling function
    def model_fn(x_t, ts, **kwargs):
        half = x_t[: len(x_t) // 2]
        combined = th.cat([half, half], dim=0)
        model_out = model(combined, ts, **kwargs)
        eps, rest = model_out[:, :3], model_out[:, 3:]
        cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
        half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
        eps = th.cat([half_eps, half_eps], dim=0)
        return th.cat([eps, rest], dim=1)

    # Sample from the base model.
    model.del_cache()
    samples = diffusion.p_sample_loop(
        model_fn,
        (full_batch_size, 3, options["image_size"], options["image_size"]),
        device=device,
        clip_denoised=True,
        progress=True,
        model_kwargs=model_kwargs,
        cond_fn=None,
    )[:batch_size]
    model.del_cache()

    # Show the output
    show_images(samples)
demo = gr.Interface(fn =generate_image_from_text,inputs ="text",outputs ="image")
demo.launch()