import os from dotenv import load_dotenv from langchain_community.utilities import SQLDatabase from langchain_community.agent_toolkits import create_sql_agent from langchain_openai import ChatOpenAI # from huggingface_hub import notebook_login # from huggingface_hub import hf_secrets # Load environment variables from .env file def initiate_chat(querry): load_dotenv() # notebook_login() # Set environment variables for API keys # os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY") # os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY") # os.environ["LANGCHAIN_TRACING_V2"] = "true" # Define the SQL database URI db_uri = "sqlite:///db.db" # Initialize the SQLDatabase object db = SQLDatabase.from_uri(db_uri) api_key = os.getenv("open_api") # Initialize the ChatOpenAI object with the desired model llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0, api_key=api_key) # llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) # Create the SQL agent agent_executor = create_sql_agent(llm, db=db, agent_type="openai-tools", verbose=True) # Define the query to get the sum of all salaries # Execute the query using the agent try: result = agent_executor.invoke(querry) return result except Exception as e: print(f"Error: {e}") return "Error: " + str(e)