Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,39 +5,35 @@ import torch
|
|
5 |
import os
|
6 |
import gradio as gr
|
7 |
|
8 |
-
|
|
|
9 |
model_name = "gpt2"
|
10 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
11 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
12 |
|
13 |
-
|
14 |
with open("normans_wikipedia.txt", "r", encoding="utf-8") as file:
|
15 |
data = file.read()
|
16 |
|
17 |
-
# Specify the output directory for fine-tuned model
|
18 |
output_dir = "./normans_fine-tuned"
|
19 |
os.makedirs(output_dir, exist_ok=True)
|
20 |
|
21 |
-
# Tokenize and encode the data
|
22 |
-
input_ids = tokenizer.encode(data, return_tensors="pt")
|
23 |
|
24 |
-
|
25 |
dataset = TextDataset(
|
26 |
tokenizer=tokenizer,
|
27 |
file_path="normans_wikipedia.txt",
|
28 |
-
block_size=512,
|
29 |
)
|
30 |
data_collator = DataCollatorForLanguageModeling(
|
31 |
tokenizer=tokenizer,
|
32 |
mlm=False
|
33 |
)
|
34 |
|
35 |
-
# Fine-tune the model
|
36 |
-
# Fine-tune the model
|
37 |
training_args = TrainingArguments(
|
38 |
output_dir=output_dir,
|
39 |
overwrite_output_dir=True,
|
40 |
-
num_train_epochs=
|
41 |
per_device_train_batch_size=2,
|
42 |
save_steps=10_000,
|
43 |
save_total_limit=2,
|
@@ -54,25 +50,21 @@ trainer = Trainer(
|
|
54 |
train_dataset=dataset,
|
55 |
)
|
56 |
|
57 |
-
|
58 |
try:
|
59 |
trainer.train()
|
60 |
except KeyboardInterrupt:
|
61 |
print("Training interrupted by user.")
|
62 |
|
63 |
-
|
64 |
model.save_pretrained(output_dir)
|
65 |
tokenizer.save_pretrained(output_dir)
|
66 |
-
|
67 |
-
# Load the fine-tuned model
|
68 |
fine_tuned_model = GPT2LMHeadModel.from_pretrained(output_dir)
|
69 |
|
70 |
-
|
71 |
def generate_response(user_input):
|
72 |
-
# Tokenize and encode user input
|
73 |
user_input_ids = tokenizer.encode(user_input, return_tensors="pt")
|
74 |
|
75 |
-
# Generate response from the fine-tuned model
|
76 |
generated_output = fine_tuned_model.generate(
|
77 |
user_input_ids,
|
78 |
max_length=100,
|
@@ -83,12 +75,11 @@ def generate_response(user_input):
|
|
83 |
temperature=0.9
|
84 |
)
|
85 |
|
86 |
-
# Decode and return the generated response
|
87 |
chatbot_response = tokenizer.decode(
|
88 |
generated_output[0], skip_special_tokens=True)
|
89 |
return "Chatbot: " + chatbot_response
|
90 |
|
91 |
-
|
92 |
iface = gr.Interface(
|
93 |
fn=generate_response,
|
94 |
inputs="text",
|
@@ -96,5 +87,4 @@ iface = gr.Interface(
|
|
96 |
live=True
|
97 |
)
|
98 |
|
99 |
-
# Launch the Gradio interface
|
100 |
iface.launch()
|
|
|
5 |
import os
|
6 |
import gradio as gr
|
7 |
|
8 |
+
|
9 |
+
|
10 |
model_name = "gpt2"
|
11 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
12 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
13 |
|
14 |
+
|
15 |
with open("normans_wikipedia.txt", "r", encoding="utf-8") as file:
|
16 |
data = file.read()
|
17 |
|
|
|
18 |
output_dir = "./normans_fine-tuned"
|
19 |
os.makedirs(output_dir, exist_ok=True)
|
20 |
|
|
|
|
|
21 |
|
22 |
+
input_ids = tokenizer.encode(data, return_tensors="pt")
|
23 |
dataset = TextDataset(
|
24 |
tokenizer=tokenizer,
|
25 |
file_path="normans_wikipedia.txt",
|
26 |
+
block_size=512,
|
27 |
)
|
28 |
data_collator = DataCollatorForLanguageModeling(
|
29 |
tokenizer=tokenizer,
|
30 |
mlm=False
|
31 |
)
|
32 |
|
|
|
|
|
33 |
training_args = TrainingArguments(
|
34 |
output_dir=output_dir,
|
35 |
overwrite_output_dir=True,
|
36 |
+
num_train_epochs=20,
|
37 |
per_device_train_batch_size=2,
|
38 |
save_steps=10_000,
|
39 |
save_total_limit=2,
|
|
|
50 |
train_dataset=dataset,
|
51 |
)
|
52 |
|
53 |
+
|
54 |
try:
|
55 |
trainer.train()
|
56 |
except KeyboardInterrupt:
|
57 |
print("Training interrupted by user.")
|
58 |
|
59 |
+
|
60 |
model.save_pretrained(output_dir)
|
61 |
tokenizer.save_pretrained(output_dir)
|
|
|
|
|
62 |
fine_tuned_model = GPT2LMHeadModel.from_pretrained(output_dir)
|
63 |
|
64 |
+
|
65 |
def generate_response(user_input):
|
|
|
66 |
user_input_ids = tokenizer.encode(user_input, return_tensors="pt")
|
67 |
|
|
|
68 |
generated_output = fine_tuned_model.generate(
|
69 |
user_input_ids,
|
70 |
max_length=100,
|
|
|
75 |
temperature=0.9
|
76 |
)
|
77 |
|
|
|
78 |
chatbot_response = tokenizer.decode(
|
79 |
generated_output[0], skip_special_tokens=True)
|
80 |
return "Chatbot: " + chatbot_response
|
81 |
|
82 |
+
|
83 |
iface = gr.Interface(
|
84 |
fn=generate_response,
|
85 |
inputs="text",
|
|
|
87 |
live=True
|
88 |
)
|
89 |
|
|
|
90 |
iface.launch()
|