import os from dotenv import load_dotenv from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline # Load environment variables if needed load_dotenv() # Use the Qwen2.5-7B-Instruct-1M model from Hugging Face MODEL_NAME = "Qwen/Qwen2.5-7B-Instruct-1M" # Initialize tokenizer and model tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map="auto", # or "cpu", "cuda", etc. as appropriate trust_remote_code=True ) # Create pipeline qwen_pipeline = pipeline( "text-generation", model=model, tokenizer=tokenizer ) def generate_response(retrieved_texts, query, max_new_tokens=512): """ Generates a response based on the retrieved texts and query using the Qwen pipeline. Args: retrieved_texts (list): List of retrieved text strings. query (str): The user's query string. max_new_tokens (int): Maximum number of tokens for the generated answer. Returns: str: Generated response. """ # Construct a simple prompt using your retrieved context context = "\n".join(retrieved_texts) prompt = f"Context:\n{context}\n\nQuestion: {query}\nAnswer:" # Generate the text result = qwen_pipeline( prompt, max_new_tokens=max_new_tokens, do_sample=True, # or False if you prefer deterministic output temperature=0.7, # adjust as needed ) # Extract the generated text from the pipeline's output generated_text = result[0]["generated_text"] # Optional: Clean up the output to isolate the answer portion if "Answer:" in generated_text: answer_part = generated_text.split("Answer:")[-1].strip() else: answer_part = generated_text return answer_part