Spaces:
Sleeping
Sleeping
File size: 5,390 Bytes
38b6ee6 15773f6 215e74e 15773f6 887b1f9 15773f6 4d94499 b2c6609 15773f6 bdcef72 b2c6609 4d94499 bdcef72 b2c6609 4d94499 b2c6609 15773f6 4d94499 61f4130 88657de d083506 4d94499 4ebf50c b2c6609 4d94499 15773f6 59e9cef 15773f6 d083506 15773f6 61f4130 25007bd 887b1f9 215e74e 25007bd 887b1f9 215e74e 887b1f9 215e74e bdcef72 25007bd 61f4130 25007bd 887b1f9 61f4130 25007bd 4d94499 25007bd bdcef72 61f4130 bdcef72 4d94499 bdcef72 b2c6609 d083506 25007bd bdcef72 61f4130 25007bd b2c6609 4d94499 d083506 4d94499 25007bd 61f4130 15773f6 bdcef72 15773f6 b2c6609 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
import os
import streamlit as st
import torch
from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
def create_conversation_prompt(name1: str, name2: str, persona_style: str):
"""
Create a prompt that instructs the model to produce exactly 15 messages
of conversation, alternating between name1 and name2, starting with name1.
"""
prompt_template_str = f"""
You are to simulate a conversation of exactly 15 messages total between two people: {name1} and {name2}.
The conversation should reflect the style: {persona_style}.
{name1} speaks first (message 1), then {name2} (message 2), then {name1} (message 3), and so forth,
alternating until all 15 messages are complete (the 15th message is by {name1}).
Rules:
- Output only the 15 messages of the conversation, nothing else.
- Each message must be in the format:
{name1}: <one or two short sentences>
{name2}: <one or two short sentences>
- Do not add any headings, such as '# Conversation' or '---'.
- Do not repeat the conversation.
- Do not produce anything after the 15th message.
- Use everyday language, can ask questions, show opinions.
- Use emojis sparingly, if at all (no more than 1-2 in the entire conversation).
- No repetition of the same message. Each message is unique and responds logically to the previous one.
- The conversation ends exactly after the 15th message by {name1} with no extra lines or content.
Now, produce all 15 messages strictly following the above instructions:
"""
return ChatPromptTemplate.from_template(prompt_template_str)
def create_summary_prompt(name1: str, name2: str, conversation: str):
"""Create a prompt specifically for generating a title and summary of the conversation."""
summary_prompt_str = f"""
The following is a completed conversation between {name1} and {name2}:
{conversation}
Please provide:
Title: <A short descriptive title of the conversation>
Summary: <A few short sentences highlighting the main points, tone, and conclusion>
Do not continue the conversation, do not repeat it, just provide a title and summary.
"""
return ChatPromptTemplate.from_template(summary_prompt_str)
def main():
st.title("LLM Conversation Simulation")
model_names = [
"meta-llama/Llama-3.3-70B-Instruct",
"mistralai/Mistral-7B-v0.1",
"lmsys/vicuna-13b-v1.5",
"tiiuae/falcon-180B",
"EleutherAI/gpt-neox-20b",
"dice-research/lola_v1"
]
selected_model = st.selectbox("Select a model:", model_names)
name1 = st.text_input("Enter the first user's name:", value="Alice")
name2 = st.text_input("Enter the second user's name:", value="Bob")
persona_style = st.text_area("Enter the persona style characteristics:",
value="friendly, curious, and a bit sarcastic")
if st.button("Start Conversation Simulation"):
st.write("**Loading model...**")
print("Loading model...")
with st.spinner("Starting simulation..."):
endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"
try:
llm = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
task="text-generation",
temperature=0.7,
max_new_tokens=512
)
st.write("**Model loaded successfully!**")
print("Model loaded successfully!")
except Exception as e:
st.error(f"Error initializing HuggingFaceEndpoint: {e}")
print(f"Error initializing HuggingFaceEndpoint: {e}")
return
conversation_prompt = create_conversation_prompt(name1, name2, persona_style)
conversation_chain = LLMChain(llm=llm, prompt=conversation_prompt)
st.write("**Generating the full 15-message conversation...**")
print("Generating the full 15-message conversation...")
try:
# Generate all 15 messages in one go
conversation = conversation_chain.run(chat_history="", input="Produce the full conversation now.")
conversation = conversation.strip()
st.subheader("Final Conversation:")
st.text(conversation)
print("Conversation Generation Complete.\n")
print("Full Conversation:\n", conversation)
# Now summarize
summary_prompt = create_summary_prompt(name1, name2, conversation)
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
st.subheader("Summary and Title:")
st.write("**Summarizing the conversation...**")
print("Summarizing the conversation...")
summary = summary_chain.run(chat_history="", input="")
st.write(summary)
print("Summary:\n", summary)
except Exception as e:
st.error(f"Error generating conversation: {e}")
print(f"Error generating conversation: {e}")
if __name__ == "__main__":
main()
|