File size: 5,390 Bytes
38b6ee6
15773f6
 
215e74e
15773f6
887b1f9
15773f6
4d94499
b2c6609
 
 
 
15773f6
bdcef72
 
b2c6609
 
4d94499
bdcef72
b2c6609
 
 
 
 
 
 
4d94499
b2c6609
 
 
 
 
15773f6
 
 
4d94499
 
 
 
61f4130
88657de
d083506
4d94499
 
 
4ebf50c
b2c6609
4d94499
 
15773f6
 
 
 
 
 
59e9cef
 
 
 
 
15773f6
 
 
d083506
 
15773f6
 
 
 
61f4130
 
 
25007bd
887b1f9
215e74e
25007bd
887b1f9
 
215e74e
887b1f9
215e74e
bdcef72
25007bd
61f4130
 
25007bd
887b1f9
61f4130
25007bd
 
4d94499
 
25007bd
bdcef72
 
61f4130
bdcef72
 
4d94499
bdcef72
b2c6609
d083506
25007bd
bdcef72
61f4130
25007bd
b2c6609
4d94499
 
 
d083506
4d94499
 
 
 
25007bd
61f4130
15773f6
bdcef72
 
 
 
15773f6
 
b2c6609
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import streamlit as st
import torch
from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain_huggingface import HuggingFaceEndpoint

def create_conversation_prompt(name1: str, name2: str, persona_style: str):
    """
    Create a prompt that instructs the model to produce exactly 15 messages
    of conversation, alternating between name1 and name2, starting with name1.
    """
    prompt_template_str = f"""
    You are to simulate a conversation of exactly 15 messages total between two people: {name1} and {name2}.
    The conversation should reflect the style: {persona_style}.
    {name1} speaks first (message 1), then {name2} (message 2), then {name1} (message 3), and so forth, 
    alternating until all 15 messages are complete (the 15th message is by {name1}).

    Rules:
    - Output only the 15 messages of the conversation, nothing else.
    - Each message must be in the format:
      {name1}: <one or two short sentences>
      {name2}: <one or two short sentences>
    - Do not add any headings, such as '# Conversation' or '---'.
    - Do not repeat the conversation.
    - Do not produce anything after the 15th message.
    - Use everyday language, can ask questions, show opinions.
    - Use emojis sparingly, if at all (no more than 1-2 in the entire conversation).
    - No repetition of the same message. Each message is unique and responds logically to the previous one.
    - The conversation ends exactly after the 15th message by {name1} with no extra lines or content.

    Now, produce all 15 messages strictly following the above instructions:
    """
    return ChatPromptTemplate.from_template(prompt_template_str)

def create_summary_prompt(name1: str, name2: str, conversation: str):
    """Create a prompt specifically for generating a title and summary of the conversation."""
    summary_prompt_str = f"""
    The following is a completed conversation between {name1} and {name2}:

    {conversation}

    Please provide:
    Title: <A short descriptive title of the conversation>
    Summary: <A few short sentences highlighting the main points, tone, and conclusion>

    Do not continue the conversation, do not repeat it, just provide a title and summary.
    """
    return ChatPromptTemplate.from_template(summary_prompt_str)

def main():
    st.title("LLM Conversation Simulation")

    model_names = [
        "meta-llama/Llama-3.3-70B-Instruct",
        "mistralai/Mistral-7B-v0.1",
        "lmsys/vicuna-13b-v1.5",
        "tiiuae/falcon-180B",
        "EleutherAI/gpt-neox-20b",
        "dice-research/lola_v1"
    ]
    selected_model = st.selectbox("Select a model:", model_names)

    name1 = st.text_input("Enter the first user's name:", value="Alice")
    name2 = st.text_input("Enter the second user's name:", value="Bob")
    persona_style = st.text_area("Enter the persona style characteristics:", 
                                 value="friendly, curious, and a bit sarcastic")

    if st.button("Start Conversation Simulation"):
        st.write("**Loading model...**")
        print("Loading model...")

        with st.spinner("Starting simulation..."):
            endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"

            try:
                llm = HuggingFaceEndpoint(
                    endpoint_url=endpoint_url,
                    huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
                    task="text-generation",
                    temperature=0.7,
                    max_new_tokens=512
                )
                st.write("**Model loaded successfully!**")
                print("Model loaded successfully!")
            except Exception as e:
                st.error(f"Error initializing HuggingFaceEndpoint: {e}")
                print(f"Error initializing HuggingFaceEndpoint: {e}")
                return

            conversation_prompt = create_conversation_prompt(name1, name2, persona_style)
            conversation_chain = LLMChain(llm=llm, prompt=conversation_prompt)

            st.write("**Generating the full 15-message conversation...**")
            print("Generating the full 15-message conversation...")

            try:
                # Generate all 15 messages in one go
                conversation = conversation_chain.run(chat_history="", input="Produce the full conversation now.")
                conversation = conversation.strip()

                st.subheader("Final Conversation:")
                st.text(conversation)
                print("Conversation Generation Complete.\n")
                print("Full Conversation:\n", conversation)

                # Now summarize
                summary_prompt = create_summary_prompt(name1, name2, conversation)
                summary_chain = LLMChain(llm=llm, prompt=summary_prompt)

                st.subheader("Summary and Title:")
                st.write("**Summarizing the conversation...**")
                print("Summarizing the conversation...")

                summary = summary_chain.run(chat_history="", input="")
                st.write(summary)
                print("Summary:\n", summary)

            except Exception as e:
                st.error(f"Error generating conversation: {e}")
                print(f"Error generating conversation: {e}")

if __name__ == "__main__":
    main()