Spaces:
Sleeping
Sleeping
File size: 7,787 Bytes
38b6ee6 15773f6 215e74e 15773f6 887b1f9 15773f6 d083506 15773f6 d083506 15773f6 d083506 15773f6 d083506 61f4130 15773f6 d083506 38b6ee6 15773f6 61f4130 15773f6 d083506 61f4130 d083506 15773f6 215e74e 15773f6 61f4130 15773f6 d083506 15773f6 61f4130 25007bd 887b1f9 215e74e 25007bd 887b1f9 215e74e 887b1f9 215e74e 25007bd 61f4130 25007bd 887b1f9 61f4130 25007bd d083506 215e74e 25007bd 61f4130 d083506 25007bd d083506 25007bd 61f4130 25007bd 61f4130 d083506 25007bd 61f4130 15773f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import os
import streamlit as st
import torch
from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
def create_prompt(name1: str, name2: str, persona_style: str):
"""Create the chat prompt template for a two-person conversation."""
# We'll define that name1 (e.g., Alice) starts the conversation.
# The conversation is recorded as:
# Alice: {input or response}
# Bob: {response}
# and so on...
prompt_template_str = f"""
You are simulating a conversation between two people: {name1} and {name2}. Both are human individuals. The conversation should embody the style and characteristics defined as {persona_style}. They are talking to each other naturally. There are no 'Human' or 'AI' roles here, just {name1} and {name2} speaking alternately. {name1} starts the conversation. Each message should be in the format:
{name1}: <message>
{name2}: <message>
Characteristics and style:
- Both {name1} and {name2} communicate in a friendly, human-like manner.
- They can be curious, ask questions, share opinions.
- Their responses should be brief and natural, like texting a friend.
- They can use everyday language, show feelings and opinions.
- Keep each response to about 1-2 short sentences.
- Use emojis sparingly and naturally if it fits the persona_style.
- Avoid overusing emojis (1-2 max per message).
Make sure that each turn is clearly designated as {name1} or {name2}. The conversation should continue for a total of 15 messages. Start with {name1} speaking first. Alternate between {name1} and {name2}.
Once the 15th message is given (by {name1}, since the conversation starts with {name1}), the conversation ends. After that, produce a summary and a title of the conversation separately.
Current partial conversation (if any):
{{chat_history}}
Next message:
"""
return ChatPromptTemplate.from_template(prompt_template_str)
def simulate_conversation(chain: LLMChain, name1: str, name2: str, total_messages: int = 15):
"""
Simulate a conversation of exactly total_messages turns.
name1 starts the conversation (message 1), then name2 (message 2), etc., alternating.
"""
conversation_lines = []
st.write("**Starting conversation simulation...**")
print("Starting conversation simulation...")
try:
for i in range(total_messages):
# Build truncated conversation (if needed, though we may not need truncation with only 15 messages)
truncated_history = "\n".join(conversation_lines)
# Determine whose turn it is:
# i=0 (first message), i even => name1 speaks, i odd => name2 speaks
current_speaker = name1 if i % 2 == 0 else name2
st.write(f"**[Message {i+1}/{total_messages}] {current_speaker} is speaking...**")
print(f"[Message {i+1}/{total_messages}] {current_speaker} is speaking...")
# We ask the model for the next line in the conversation
# The model should produce something like: "Alice: ...message..."
response = chain.run(chat_history=truncated_history, input="Continue the conversation.")
response = response.strip()
# We only keep the line that pertains to the current message
# If the model generates both speakers, we may need to parse carefully.
# Ideally, the model will produce only one line. If multiple lines appear, we'll take the first line that starts with current_speaker.
lines = response.split("\n")
chosen_line = None
for line in lines:
line = line.strip()
if line.startswith(f"{current_speaker}:"):
chosen_line = line
break
if not chosen_line:
# Fallback: If not found, just use the first line
chosen_line = lines[0] if lines else f"{current_speaker}: (No response)"
st.write(chosen_line)
print(chosen_line)
conversation_lines.append(chosen_line)
final_conversation = "\n".join(conversation_lines)
return final_conversation
except Exception as e:
st.error(f"Error during conversation simulation: {e}")
print(f"Error during conversation simulation: {e}")
return None
def summarize_conversation(chain: LLMChain, conversation: str, name1: str, name2: str):
"""Use the LLM to summarize the completed conversation and provide a title."""
st.write("**Summarizing the conversation...**")
print("Summarizing the conversation...")
summary_prompt = f"""
The following is a conversation between {name1} and {name2}:
{conversation}
Provide a short descriptive title for their conversation and then summarize it in a few short sentences highlighting the main points, tone, and conclusion.
Format your answer as:
Title: <your conversation title>
Summary: <your summary here>
"""
try:
response = chain.run(chat_history="", input=summary_prompt)
return response.strip()
except Exception as e:
st.error(f"Error summarizing conversation: {e}")
print(f"Error summarizing conversation: {e}")
return "No summary available due to error."
def main():
st.title("LLM Conversation Simulation")
model_names = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-405B-Instruct",
"lmsys/vicuna-13b-v1.5"
]
selected_model = st.selectbox("Select a model:", model_names)
# Two user names
name1 = st.text_input("Enter the first user's name:", value="Alice")
name2 = st.text_input("Enter the second user's name:", value="Bob")
persona_style = st.text_area("Enter the persona style characteristics:",
value="friendly, curious, and a bit sarcastic")
if st.button("Start Conversation Simulation"):
st.write("**Loading model...**")
print("Loading model...")
with st.spinner("Starting simulation..."):
endpoint_url = f"https://api-inference.huggingface.co/models/{selected_model}"
try:
llm = HuggingFaceEndpoint(
endpoint_url=endpoint_url,
huggingfacehub_api_token=os.environ.get("HUGGINGFACEHUB_API_TOKEN"),
task="text-generation",
temperature=0.7,
max_new_tokens=512
)
st.write("**Model loaded successfully!**")
print("Model loaded successfully!")
except Exception as e:
st.error(f"Error initializing HuggingFaceEndpoint: {e}")
print(f"Error initializing HuggingFaceEndpoint: {e}")
return
prompt = create_prompt(name1, name2, persona_style)
chain = LLMChain(llm=llm, prompt=prompt)
st.write("**Simulating the conversation...**")
print("Simulating the conversation...")
# Total messages = 15
conversation = simulate_conversation(chain, name1, name2, total_messages=15)
if conversation:
st.subheader("Final Conversation:")
st.text(conversation)
print("Conversation Simulation Complete.\n")
print("Full Conversation:\n", conversation)
# Summarize conversation
st.subheader("Summary and Title:")
summary = summarize_conversation(chain, conversation, name1, name2)
st.write(summary)
print("Summary:\n", summary)
if __name__ == "__main__":
main()
|