Spaces:
Runtime error
Runtime error
RamAnanth1
commited on
Commit
·
7a5c6a0
1
Parent(s):
0c0c966
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import einops
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
from pytorch_lightning import seed_everything
|
9 |
+
from util import resize_image, HWC3, apply_canny
|
10 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
11 |
+
|
12 |
+
from cldm.model import create_model, load_state_dict
|
13 |
+
|
14 |
+
from huggingface_hub import hf_hub_url, cached_download
|
15 |
+
REPO_ID = "lllyasviel/ControlNet"
|
16 |
+
FILENAME = "models/control_sd15_canny.pth"
|
17 |
+
|
18 |
+
model = create_model('./models/cldm_v15.yaml')
|
19 |
+
model.load_state_dict(load_state_dict(cached_download(
|
20 |
+
hf_hub_url(REPO_ID, FILENAME)
|
21 |
+
), location='cpu'))
|
22 |
+
ddim_sampler = DDIMSampler(model)
|
23 |
+
|
24 |
+
def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
25 |
+
with torch.no_grad():
|
26 |
+
img = resize_image(HWC3(input_image), image_resolution)
|
27 |
+
H, W, C = img.shape
|
28 |
+
|
29 |
+
detected_map = apply_canny(img, low_threshold, high_threshold)
|
30 |
+
detected_map = HWC3(detected_map)
|
31 |
+
|
32 |
+
control = torch.from_numpy(detected_map.copy()).float() / 255.0
|
33 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
34 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
35 |
+
|
36 |
+
seed_everything(seed)
|
37 |
+
|
38 |
+
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
39 |
+
un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
40 |
+
shape = (4, H // 8, W // 8)
|
41 |
+
|
42 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
43 |
+
shape, cond, verbose=False, eta=eta,
|
44 |
+
unconditional_guidance_scale=scale,
|
45 |
+
unconditional_conditioning=un_cond)
|
46 |
+
x_samples = model.decode_first_stage(samples)
|
47 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
48 |
+
|
49 |
+
results = [x_samples[i] for i in range(num_samples)]
|
50 |
+
return [255 - detected_map] + results
|
51 |
+
|
52 |
+
|
53 |
+
block = gr.Blocks().queue()
|
54 |
+
with block:
|
55 |
+
with gr.Row():
|
56 |
+
gr.Markdown("## Control Stable Diffusion with Canny Edge Maps")
|
57 |
+
with gr.Row():
|
58 |
+
with gr.Column():
|
59 |
+
input_image = gr.Image(source='upload', type="numpy")
|
60 |
+
prompt = gr.Textbox(label="Prompt")
|
61 |
+
run_button = gr.Button(label="Run")
|
62 |
+
with gr.Accordion("Advanced options", open=False):
|
63 |
+
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
|
64 |
+
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
|
65 |
+
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
|
66 |
+
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
|
67 |
+
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
|
68 |
+
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
|
69 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
|
70 |
+
eta = gr.Number(label="eta (DDIM)", value=0.0)
|
71 |
+
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
|
72 |
+
n_prompt = gr.Textbox(label="Negative Prompt",
|
73 |
+
value='longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality')
|
74 |
+
with gr.Column():
|
75 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
|
76 |
+
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold]
|
77 |
+
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
78 |
+
|
79 |
+
|
80 |
+
block.launch(debug = True)
|