RamAnanth1 commited on
Commit
e05666e
1 Parent(s): ecb48ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -41
app.py CHANGED
@@ -15,17 +15,17 @@ high_threshold = 200
15
 
16
 
17
  # Models
18
- controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
19
- pipe_canny = StableDiffusionControlNetPipeline.from_pretrained(
20
- "runwayml/stable-diffusion-v1-5", controlnet=controlnet_canny, safety_checker=None, torch_dtype=torch.float16
21
- )
22
- pipe_canny.scheduler = UniPCMultistepScheduler.from_config(pipe_canny.scheduler.config)
23
 
24
- # This command loads the individual model components on GPU on-demand. So, we don't
25
- # need to explicitly call pipe.to("cuda").
26
- pipe_canny.enable_model_cpu_offload()
27
 
28
- pipe_canny.enable_xformers_memory_efficient_attention()
29
 
30
  # Generator seed,
31
  generator = torch.manual_seed(0)
@@ -47,38 +47,38 @@ pipe_pose.enable_model_cpu_offload()
47
  pipe_pose.enable_xformers_memory_efficient_attention()
48
 
49
 
50
- def get_canny_filter(image):
51
 
52
- if not isinstance(image, np.ndarray):
53
- image = np.array(image)
54
 
55
- image = cv2.Canny(image, low_threshold, high_threshold)
56
- image = image[:
57
- , :, None]
58
- image = np.concatenate([image, image, image], axis=2)
59
- canny_image = Image.fromarray(image)
60
- return canny_image
61
 
62
  def get_pose(image):
63
  return pose_model(image)
64
 
65
  def process(input_image, prompt, input_control):
66
  # TODO: Add other control tasks
67
- if input_control == "Pose":
68
- return process_pose(input_image, prompt)
69
- else:
70
- return process_canny(input_image, prompt)
71
-
72
- def process_canny(input_image, prompt):
73
- canny_image = get_canny_filter(input_image)
74
- output = pipe_canny(
75
- prompt,
76
- canny_image,
77
- generator=generator,
78
- num_images_per_prompt=1,
79
- num_inference_steps=20,
80
- )
81
- return [canny_image,output.images[0]]
82
 
83
 
84
  def process_pose(input_image, prompt):
@@ -109,22 +109,22 @@ with block:
109
  with gr.Row():
110
  with gr.Column():
111
  input_image = gr.Image(source='upload', type="numpy")
112
- input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task")
113
  prompt = gr.Textbox(label="Prompt")
114
  run_button = gr.Button(label="Run")
115
 
116
 
117
  with gr.Column():
118
  result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
119
- ips = [input_image, prompt, input_control]
120
  run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
121
  examples_list = [
122
- [
123
- "bird.png",
124
- "bird",
125
- "Canny Edge Map"
126
 
127
- ],
128
 
129
  # [
130
  # "turtle.png",
@@ -159,7 +159,7 @@ with block:
159
 
160
  ]
161
  ]
162
- examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt, input_control], outputs = [result_gallery], cache_examples = True, fn = process)
163
  gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=RamAnanth1.ControlNet)")
164
 
165
  block.launch(debug = True)
 
15
 
16
 
17
  # Models
18
+ # controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
19
+ # pipe_canny = StableDiffusionControlNetPipeline.from_pretrained(
20
+ # "runwayml/stable-diffusion-v1-5", controlnet=controlnet_canny, safety_checker=None, torch_dtype=torch.float16
21
+ # )
22
+ # pipe_canny.scheduler = UniPCMultistepScheduler.from_config(pipe_canny.scheduler.config)
23
 
24
+ # # This command loads the individual model components on GPU on-demand. So, we don't
25
+ # # need to explicitly call pipe.to("cuda").
26
+ # pipe_canny.enable_model_cpu_offload()
27
 
28
+ # pipe_canny.enable_xformers_memory_efficient_attention()
29
 
30
  # Generator seed,
31
  generator = torch.manual_seed(0)
 
47
  pipe_pose.enable_xformers_memory_efficient_attention()
48
 
49
 
50
+ # def get_canny_filter(image):
51
 
52
+ # if not isinstance(image, np.ndarray):
53
+ # image = np.array(image)
54
 
55
+ # image = cv2.Canny(image, low_threshold, high_threshold)
56
+ # image = image[:
57
+ # , :, None]
58
+ # image = np.concatenate([image, image, image], axis=2)
59
+ # canny_image = Image.fromarray(image)
60
+ # return canny_image
61
 
62
  def get_pose(image):
63
  return pose_model(image)
64
 
65
  def process(input_image, prompt, input_control):
66
  # TODO: Add other control tasks
67
+ #if input_control == "Pose":
68
+ return process_pose(input_image, prompt)
69
+ # else:
70
+ # return process_canny(input_image, prompt)
71
+
72
+ # def process_canny(input_image, prompt):
73
+ # canny_image = get_canny_filter(input_image)
74
+ # output = pipe_canny(
75
+ # prompt,
76
+ # canny_image,
77
+ # generator=generator,
78
+ # num_images_per_prompt=1,
79
+ # num_inference_steps=20,
80
+ # )
81
+ # return [canny_image,output.images[0]]
82
 
83
 
84
  def process_pose(input_image, prompt):
 
109
  with gr.Row():
110
  with gr.Column():
111
  input_image = gr.Image(source='upload', type="numpy")
112
+ # input_control = gr.Dropdown(control_task_list, value="Scribble", label="Control Task")
113
  prompt = gr.Textbox(label="Prompt")
114
  run_button = gr.Button(label="Run")
115
 
116
 
117
  with gr.Column():
118
  result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
119
+ ips = [input_image, prompt]
120
  run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
121
  examples_list = [
122
+ # [
123
+ # "bird.png",
124
+ # "bird",
125
+ # "Canny Edge Map"
126
 
127
+ # ],
128
 
129
  # [
130
  # "turtle.png",
 
159
 
160
  ]
161
  ]
162
+ examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt], outputs = [result_gallery], cache_examples = True, fn = process)
163
  gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=RamAnanth1.ControlNet)")
164
 
165
  block.launch(debug = True)