File size: 4,238 Bytes
732325f
 
 
 
 
 
 
 
 
06c64f4
 
732325f
87c9df6
732325f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b9d533
732325f
 
 
 
 
 
 
 
 
 
 
 
 
 
5d898d2
06c64f4
 
 
5d898d2
06c64f4
 
d019ade
 
 
 
 
 
732325f
d019ade
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
732325f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import gradio as gr 
from lavis.models import load_model_and_preprocess
import torch

device = torch.device("cuda") if torch.cuda.is_available() else "cpu"

model_name = "blip2_t5_instruct"
model_type = "flant5xl"
model, vis_processors, _ = load_model_and_preprocess(
    name=model_name,
    model_type=model_type,
    is_eval=True,
    device=device
)

def infer(image, prompt, min_len, max_len, beam_size, len_penalty, repetition_penalty, top_p, decoding_method):
        use_nucleus_sampling = decoding_method == "Nucleus sampling"
        image = vis_processors["eval"](image).unsqueeze(0).to(device)

        samples = {
            "image": image,
            "prompt": prompt,
        }

        output = model.generate(
            samples,
            length_penalty=float(len_penalty),
            repetition_penalty=float(repetition_penalty),
            num_beams=beam_size,
            max_length=max_len,
            min_length=min_len,
            top_p=top_p,
            use_nucleus_sampling=use_nucleus_sampling
        )

        return output[0]
    
theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
css = ".generating {visibility: hidden}"

with gr.Blocks(theme=theme, analytics_enabled=False,css=css) as demo:
    gr.Markdown("## InstructBLIP: Towards General-purpose Vision-Language Models with Instruction Tuning")
    gr.Markdown(
            """
            Unofficial demo for InstructBLIP. InstructBLIP is a new vision-language instruction-tuning framework by Salesforce that uses BLIP-2 models, achieving state-of-the-art zero-shot generalization performance on a wide range of vision-language tasks.
            The demo is based on the official <a href="https://github.com/salesforce/LAVIS/tree/main/projects/instructblip" style="text-decoration: underline;" target="_blank"> Github </a> implementation
            """
        )
    with gr.Row():
        with gr.Column(scale=3):
            image_input = gr.Image(type="pil")
            prompt_textbox = gr.Textbox(label="Prompt:", placeholder="prompt", lines=2)
            output = gr.Textbox(label="Output")
            submit = gr.Button("Run", variant="primary")

        with gr.Column(scale=1):
            min_len = gr.Slider(
                minimum=1,
                maximum=50,
                value=1,
                step=1,
                interactive=True,
                label="Min Length",
            )
        
            max_len = gr.Slider(
                minimum=10,
                maximum=500,
                value=250,
                step=5,
                interactive=True,
                label="Max Length",
            )
        
            sampling = gr.Radio(
                choices=["Beam search", "Nucleus sampling"],
                value="Beam search",
                label="Text Decoding Method",
                interactive=True,
            )
        
            top_p = gr.Slider(
                minimum=0.5,
                maximum=1.0,
                value=0.9,
                step=0.1,
                interactive=True,
                label="Top p",
            )
        
            beam_size = gr.Slider(
                minimum=1,
                maximum=10,
                value=5,
                step=1,
                interactive=True,
                label="Beam Size",
            )
        
            len_penalty = gr.Slider(
                minimum=-1,
                maximum=2,
                value=1,
                step=0.2,
                interactive=True,
                label="Length Penalty",
            )
        
            repetition_penalty = gr.Slider(
                minimum=-1,
                maximum=3,
                value=1,
                step=0.2,
                interactive=True,
                label="Repetition Penalty",
            )
    
    submit.click(infer, inputs=[image_input, prompt_textbox, min_len, max_len, beam_size, len_penalty, repetition_penalty, top_p, sampling], outputs=[output])

demo.queue(concurrency_count=16).launch(debug=True)