Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
from PIL import Image, ImageOps | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
import requests | |
from tqdm import tqdm | |
from diffusers import StableDiffusionImg2ImgPipeline | |
import torchvision.transforms as T | |
from utils import preprocess, recover_image | |
to_pil = T.ToPILImage() | |
title = "Interactive demo: Raising the Cost of Malicious AI-Powered Image Editing" | |
model_id_or_path = "runwayml/stable-diffusion-v1-5" | |
# model_id_or_path = "CompVis/stable-diffusion-v1-4" | |
# model_id_or_path = "CompVis/stable-diffusion-v1-3" | |
# model_id_or_path = "CompVis/stable-diffusion-v1-2" | |
# model_id_or_path = "CompVis/stable-diffusion-v1-1" | |
pipe_img2img = StableDiffusionImg2ImgPipeline.from_pretrained( | |
model_id_or_path, | |
revision="fp16", | |
torch_dtype=torch.float16, | |
) | |
pipe_img2img = pipe_img2img.to("cuda") | |
def pgd(X, model, eps=0.1, step_size=0.015, iters=40, clamp_min=0, clamp_max=1, mask=None): | |
X_adv = X.clone().detach() + (torch.rand(*X.shape)*2*eps-eps).cuda() | |
pbar = tqdm(range(iters)) | |
for i in pbar: | |
actual_step_size = step_size - (step_size - step_size / 100) / iters * i | |
X_adv.requires_grad_(True) | |
loss = (model(X_adv).latent_dist.mean).norm() | |
pbar.set_description(f"[Running attack]: Loss {loss.item():.5f} | step size: {actual_step_size:.4}") | |
grad, = torch.autograd.grad(loss, [X_adv]) | |
X_adv = X_adv - grad.detach().sign() * actual_step_size | |
X_adv = torch.minimum(torch.maximum(X_adv, X - eps), X + eps) | |
X_adv.data = torch.clamp(X_adv, min=clamp_min, max=clamp_max) | |
X_adv.grad = None | |
if mask is not None: | |
X_adv.data *= mask | |
return X_adv | |
def process_image(raw_image,prompt): | |
resize = T.transforms.Resize(512) | |
center_crop = T.transforms.CenterCrop(512) | |
init_image = center_crop(resize(raw_image)) | |
with torch.autocast('cuda'): | |
X = preprocess(init_image).half().cuda() | |
adv_X = pgd(X, | |
model=pipe_img2img.vae.encode, | |
clamp_min=-1, | |
clamp_max=1, | |
eps=0.06, # The higher, the less imperceptible the attack is | |
step_size=0.02, # Set smaller than eps | |
iters=100, # The higher, the stronger your attack will be | |
) | |
# convert pixels back to [0,1] range | |
adv_X = (adv_X / 2 + 0.5).clamp(0, 1) | |
adv_image = to_pil(adv_X[0]).convert("RGB") | |
# a good seed (uncomment the line below to generate new images) | |
SEED = 9222 | |
# SEED = np.random.randint(low=0, high=10000) | |
# Play with these for improving generated image quality | |
STRENGTH = 0.5 | |
GUIDANCE = 7.5 | |
NUM_STEPS = 50 | |
with torch.autocast('cuda'): | |
torch.manual_seed(SEED) | |
image_nat = pipe_img2img(prompt=prompt, image=init_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0] | |
torch.manual_seed(SEED) | |
image_adv = pipe_img2img(prompt=prompt, image=adv_image, strength=STRENGTH, guidance_scale=GUIDANCE, num_inference_steps=NUM_STEPS).images[0] | |
return [(init_image,"Source Image"), (adv_image, "Adv Image"), (image_nat,"Gen. Image Nat"), (image_adv, "Gen. Image Adv")] | |
interface = gr.Interface(fn=process_image, | |
inputs=[gr.Image(type="pil"), gr.Textbox(label="Prompt")], | |
outputs=[gr.Gallery( | |
label="Generated images", show_label=False, elem_id="gallery" | |
).style(grid=[2], height="auto") | |
], | |
title=title | |
) | |
interface.launch(debug=True) |