Spaces:
Runtime error
Runtime error
File size: 1,498 Bytes
5cb313b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import re
import gradio as gr
import torch
from transformers import UdopProcessor, UdopForConditionalGeneration
repo_id = "microsoft/udop-large"
processor = UdopProcessor.from_pretrained(repo_id)
model = UdopForConditionalGeneration.from_pretrained(repo_id)
def process_document(image, question):
pixel_values = processor(image, return_tensors="pt").pixel_values
encoding = processor(images=image, text=question, return_tensors="pt")
outputs = model.generate(**encoding, max_new_tokens=20)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
return generated_text
description = "Unofficial Gradio Demo for UDOP for DocVQA (document visual question answering). To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2212.02623.pdf' target='_blank'>Unifying Vision, Text, and Layout for Universal Document Processing</a> | <a href='https://github.com/microsoft/UDOP' target='_blank'>Github Repo</a></p>"
demo = gr.Interface(
fn=process_document,
inputs=["image", "text"],
outputs="text",
title="Demo: UDOP for DocVQA",
description=description,
article=article,
enable_queue=True,
# examples=[["example_1.png", "When is the coffee break?"], ["example_2.jpeg", "What's the population of Stoddard?"]],
cache_examples=False)
demo.launch()
|