Spaces:
Runtime error
Runtime error
RamAnanth1
commited on
Commit
β’
ba984b2
1
Parent(s):
e16c291
Upload 26 files
Browse files- extralibs/midas/__init__.py +0 -0
- extralibs/midas/api.py +171 -0
- extralibs/midas/midas/__init__.py +0 -0
- extralibs/midas/midas/base_model.py +16 -0
- extralibs/midas/midas/blocks.py +342 -0
- extralibs/midas/midas/dpt_depth.py +110 -0
- extralibs/midas/midas/midas_net.py +76 -0
- extralibs/midas/midas/midas_net_custom.py +128 -0
- extralibs/midas/midas/transforms.py +234 -0
- extralibs/midas/midas/vit.py +489 -0
- extralibs/midas/utils.py +189 -0
- lvdm/models/ddpm3d.py +53 -4
- lvdm/models/modules/lora.py +78 -1
- lvdm/models/modules/openaimodel3d.py +10 -2
- lvdm/samplers/ddim.py +6 -6
- lvdm/utils/saving_utils.py +2 -2
extralibs/midas/__init__.py
ADDED
File without changes
|
extralibs/midas/api.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# based on https://github.com/isl-org/MiDaS
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from torchvision.transforms import Compose
|
7 |
+
|
8 |
+
from extralibs.midas.midas.dpt_depth import DPTDepthModel
|
9 |
+
from extralibs.midas.midas.midas_net import MidasNet
|
10 |
+
from extralibs.midas.midas.midas_net_custom import MidasNet_small
|
11 |
+
from extralibs.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
|
12 |
+
|
13 |
+
|
14 |
+
ISL_PATHS = {
|
15 |
+
"dpt_large": "midas_models/dpt_large-midas-2f21e586.pt",
|
16 |
+
"dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt",
|
17 |
+
"midas_v21": "",
|
18 |
+
"midas_v21_small": "",
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def disabled_train(self, mode=True):
|
23 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
24 |
+
does not change anymore."""
|
25 |
+
return self
|
26 |
+
|
27 |
+
|
28 |
+
def load_midas_transform(model_type):
|
29 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
30 |
+
# load transform only
|
31 |
+
if model_type == "dpt_large": # DPT-Large
|
32 |
+
net_w, net_h = 384, 384
|
33 |
+
resize_mode = "minimal"
|
34 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
35 |
+
|
36 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
37 |
+
net_w, net_h = 384, 384
|
38 |
+
resize_mode = "minimal"
|
39 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
40 |
+
|
41 |
+
elif model_type == "midas_v21":
|
42 |
+
net_w, net_h = 384, 384
|
43 |
+
resize_mode = "upper_bound"
|
44 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
45 |
+
|
46 |
+
elif model_type == "midas_v21_small":
|
47 |
+
net_w, net_h = 256, 256
|
48 |
+
resize_mode = "upper_bound"
|
49 |
+
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
50 |
+
|
51 |
+
else:
|
52 |
+
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
53 |
+
|
54 |
+
transform = Compose(
|
55 |
+
[
|
56 |
+
Resize(
|
57 |
+
net_w,
|
58 |
+
net_h,
|
59 |
+
resize_target=None,
|
60 |
+
keep_aspect_ratio=True,
|
61 |
+
ensure_multiple_of=32,
|
62 |
+
resize_method=resize_mode,
|
63 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
64 |
+
),
|
65 |
+
normalization,
|
66 |
+
PrepareForNet(),
|
67 |
+
]
|
68 |
+
)
|
69 |
+
|
70 |
+
return transform
|
71 |
+
|
72 |
+
|
73 |
+
def load_model(model_type, model_path=None):
|
74 |
+
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
75 |
+
# load network
|
76 |
+
if model_path is None:
|
77 |
+
model_path = ISL_PATHS[model_type]
|
78 |
+
if model_type == "dpt_large": # DPT-Large
|
79 |
+
model = DPTDepthModel(
|
80 |
+
path=model_path,
|
81 |
+
backbone="vitl16_384",
|
82 |
+
non_negative=True,
|
83 |
+
)
|
84 |
+
net_w, net_h = 384, 384
|
85 |
+
resize_mode = "minimal"
|
86 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
87 |
+
|
88 |
+
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
89 |
+
model = DPTDepthModel(
|
90 |
+
path=model_path,
|
91 |
+
backbone="vitb_rn50_384",
|
92 |
+
non_negative=True,
|
93 |
+
)
|
94 |
+
net_w, net_h = 384, 384
|
95 |
+
resize_mode = "minimal"
|
96 |
+
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
97 |
+
|
98 |
+
elif model_type == "midas_v21":
|
99 |
+
model = MidasNet(model_path, non_negative=True)
|
100 |
+
net_w, net_h = 384, 384
|
101 |
+
resize_mode = "upper_bound"
|
102 |
+
normalization = NormalizeImage(
|
103 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
104 |
+
)
|
105 |
+
|
106 |
+
elif model_type == "midas_v21_small":
|
107 |
+
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
108 |
+
non_negative=True, blocks={'expand': True})
|
109 |
+
net_w, net_h = 256, 256
|
110 |
+
resize_mode = "upper_bound"
|
111 |
+
normalization = NormalizeImage(
|
112 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
113 |
+
)
|
114 |
+
|
115 |
+
else:
|
116 |
+
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
117 |
+
assert False
|
118 |
+
|
119 |
+
transform = Compose(
|
120 |
+
[
|
121 |
+
Resize(
|
122 |
+
net_w,
|
123 |
+
net_h,
|
124 |
+
resize_target=None,
|
125 |
+
keep_aspect_ratio=True,
|
126 |
+
ensure_multiple_of=32,
|
127 |
+
resize_method=resize_mode,
|
128 |
+
image_interpolation_method=cv2.INTER_CUBIC,
|
129 |
+
),
|
130 |
+
normalization,
|
131 |
+
PrepareForNet(),
|
132 |
+
]
|
133 |
+
)
|
134 |
+
|
135 |
+
return model.eval(), transform
|
136 |
+
|
137 |
+
|
138 |
+
class MiDaSInference(nn.Module):
|
139 |
+
MODEL_TYPES_TORCH_HUB = [
|
140 |
+
"DPT_Large",
|
141 |
+
"DPT_Hybrid",
|
142 |
+
"MiDaS_small"
|
143 |
+
]
|
144 |
+
MODEL_TYPES_ISL = [
|
145 |
+
"dpt_large",
|
146 |
+
"dpt_hybrid",
|
147 |
+
"midas_v21",
|
148 |
+
"midas_v21_small",
|
149 |
+
]
|
150 |
+
|
151 |
+
def __init__(self, model_type, model_path):
|
152 |
+
super().__init__()
|
153 |
+
assert (model_type in self.MODEL_TYPES_ISL)
|
154 |
+
model, _ = load_model(model_type, model_path)
|
155 |
+
self.model = model
|
156 |
+
self.model.train = disabled_train
|
157 |
+
|
158 |
+
def forward(self, x):
|
159 |
+
# x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
|
160 |
+
# NOTE: we expect that the correct transform has been called during dataloading.
|
161 |
+
with torch.no_grad():
|
162 |
+
prediction = self.model(x)
|
163 |
+
prediction = torch.nn.functional.interpolate(
|
164 |
+
prediction.unsqueeze(1),
|
165 |
+
size=x.shape[2:],
|
166 |
+
mode="bicubic",
|
167 |
+
align_corners=False,
|
168 |
+
)
|
169 |
+
assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
|
170 |
+
return prediction
|
171 |
+
|
extralibs/midas/midas/__init__.py
ADDED
File without changes
|
extralibs/midas/midas/base_model.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
class BaseModel(torch.nn.Module):
|
5 |
+
def load(self, path):
|
6 |
+
"""Load model from file.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
path (str): file path
|
10 |
+
"""
|
11 |
+
parameters = torch.load(path, map_location=torch.device('cpu'))
|
12 |
+
|
13 |
+
if "optimizer" in parameters:
|
14 |
+
parameters = parameters["model"]
|
15 |
+
|
16 |
+
self.load_state_dict(parameters)
|
extralibs/midas/midas/blocks.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .vit import (
|
5 |
+
_make_pretrained_vitb_rn50_384,
|
6 |
+
_make_pretrained_vitl16_384,
|
7 |
+
_make_pretrained_vitb16_384,
|
8 |
+
forward_vit,
|
9 |
+
)
|
10 |
+
|
11 |
+
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
|
12 |
+
if backbone == "vitl16_384":
|
13 |
+
pretrained = _make_pretrained_vitl16_384(
|
14 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
15 |
+
)
|
16 |
+
scratch = _make_scratch(
|
17 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
18 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
19 |
+
elif backbone == "vitb_rn50_384":
|
20 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
21 |
+
use_pretrained,
|
22 |
+
hooks=hooks,
|
23 |
+
use_vit_only=use_vit_only,
|
24 |
+
use_readout=use_readout,
|
25 |
+
)
|
26 |
+
scratch = _make_scratch(
|
27 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
28 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
29 |
+
elif backbone == "vitb16_384":
|
30 |
+
pretrained = _make_pretrained_vitb16_384(
|
31 |
+
use_pretrained, hooks=hooks, use_readout=use_readout
|
32 |
+
)
|
33 |
+
scratch = _make_scratch(
|
34 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
35 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
36 |
+
elif backbone == "resnext101_wsl":
|
37 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
38 |
+
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
|
39 |
+
elif backbone == "efficientnet_lite3":
|
40 |
+
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
|
41 |
+
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
|
42 |
+
else:
|
43 |
+
print(f"Backbone '{backbone}' not implemented")
|
44 |
+
assert False
|
45 |
+
|
46 |
+
return pretrained, scratch
|
47 |
+
|
48 |
+
|
49 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
50 |
+
scratch = nn.Module()
|
51 |
+
|
52 |
+
out_shape1 = out_shape
|
53 |
+
out_shape2 = out_shape
|
54 |
+
out_shape3 = out_shape
|
55 |
+
out_shape4 = out_shape
|
56 |
+
if expand==True:
|
57 |
+
out_shape1 = out_shape
|
58 |
+
out_shape2 = out_shape*2
|
59 |
+
out_shape3 = out_shape*4
|
60 |
+
out_shape4 = out_shape*8
|
61 |
+
|
62 |
+
scratch.layer1_rn = nn.Conv2d(
|
63 |
+
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
64 |
+
)
|
65 |
+
scratch.layer2_rn = nn.Conv2d(
|
66 |
+
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
67 |
+
)
|
68 |
+
scratch.layer3_rn = nn.Conv2d(
|
69 |
+
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
70 |
+
)
|
71 |
+
scratch.layer4_rn = nn.Conv2d(
|
72 |
+
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
|
73 |
+
)
|
74 |
+
|
75 |
+
return scratch
|
76 |
+
|
77 |
+
|
78 |
+
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
|
79 |
+
efficientnet = torch.hub.load(
|
80 |
+
"rwightman/gen-efficientnet-pytorch",
|
81 |
+
"tf_efficientnet_lite3",
|
82 |
+
pretrained=use_pretrained,
|
83 |
+
exportable=exportable
|
84 |
+
)
|
85 |
+
return _make_efficientnet_backbone(efficientnet)
|
86 |
+
|
87 |
+
|
88 |
+
def _make_efficientnet_backbone(effnet):
|
89 |
+
pretrained = nn.Module()
|
90 |
+
|
91 |
+
pretrained.layer1 = nn.Sequential(
|
92 |
+
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
|
93 |
+
)
|
94 |
+
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
|
95 |
+
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
|
96 |
+
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
|
97 |
+
|
98 |
+
return pretrained
|
99 |
+
|
100 |
+
|
101 |
+
def _make_resnet_backbone(resnet):
|
102 |
+
pretrained = nn.Module()
|
103 |
+
pretrained.layer1 = nn.Sequential(
|
104 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
105 |
+
)
|
106 |
+
|
107 |
+
pretrained.layer2 = resnet.layer2
|
108 |
+
pretrained.layer3 = resnet.layer3
|
109 |
+
pretrained.layer4 = resnet.layer4
|
110 |
+
|
111 |
+
return pretrained
|
112 |
+
|
113 |
+
|
114 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
115 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
116 |
+
return _make_resnet_backbone(resnet)
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
class Interpolate(nn.Module):
|
121 |
+
"""Interpolation module.
|
122 |
+
"""
|
123 |
+
|
124 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
125 |
+
"""Init.
|
126 |
+
|
127 |
+
Args:
|
128 |
+
scale_factor (float): scaling
|
129 |
+
mode (str): interpolation mode
|
130 |
+
"""
|
131 |
+
super(Interpolate, self).__init__()
|
132 |
+
|
133 |
+
self.interp = nn.functional.interpolate
|
134 |
+
self.scale_factor = scale_factor
|
135 |
+
self.mode = mode
|
136 |
+
self.align_corners = align_corners
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
"""Forward pass.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
x (tensor): input
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
tensor: interpolated data
|
146 |
+
"""
|
147 |
+
|
148 |
+
x = self.interp(
|
149 |
+
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
|
150 |
+
)
|
151 |
+
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class ResidualConvUnit(nn.Module):
|
156 |
+
"""Residual convolution module.
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(self, features):
|
160 |
+
"""Init.
|
161 |
+
|
162 |
+
Args:
|
163 |
+
features (int): number of features
|
164 |
+
"""
|
165 |
+
super().__init__()
|
166 |
+
|
167 |
+
self.conv1 = nn.Conv2d(
|
168 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
169 |
+
)
|
170 |
+
|
171 |
+
self.conv2 = nn.Conv2d(
|
172 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
173 |
+
)
|
174 |
+
|
175 |
+
self.relu = nn.ReLU(inplace=True)
|
176 |
+
|
177 |
+
def forward(self, x):
|
178 |
+
"""Forward pass.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
x (tensor): input
|
182 |
+
|
183 |
+
Returns:
|
184 |
+
tensor: output
|
185 |
+
"""
|
186 |
+
out = self.relu(x)
|
187 |
+
out = self.conv1(out)
|
188 |
+
out = self.relu(out)
|
189 |
+
out = self.conv2(out)
|
190 |
+
|
191 |
+
return out + x
|
192 |
+
|
193 |
+
|
194 |
+
class FeatureFusionBlock(nn.Module):
|
195 |
+
"""Feature fusion block.
|
196 |
+
"""
|
197 |
+
|
198 |
+
def __init__(self, features):
|
199 |
+
"""Init.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
features (int): number of features
|
203 |
+
"""
|
204 |
+
super(FeatureFusionBlock, self).__init__()
|
205 |
+
|
206 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
207 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
208 |
+
|
209 |
+
def forward(self, *xs):
|
210 |
+
"""Forward pass.
|
211 |
+
|
212 |
+
Returns:
|
213 |
+
tensor: output
|
214 |
+
"""
|
215 |
+
output = xs[0]
|
216 |
+
|
217 |
+
if len(xs) == 2:
|
218 |
+
output += self.resConfUnit1(xs[1])
|
219 |
+
|
220 |
+
output = self.resConfUnit2(output)
|
221 |
+
|
222 |
+
output = nn.functional.interpolate(
|
223 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
224 |
+
)
|
225 |
+
|
226 |
+
return output
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
class ResidualConvUnit_custom(nn.Module):
|
232 |
+
"""Residual convolution module.
|
233 |
+
"""
|
234 |
+
|
235 |
+
def __init__(self, features, activation, bn):
|
236 |
+
"""Init.
|
237 |
+
|
238 |
+
Args:
|
239 |
+
features (int): number of features
|
240 |
+
"""
|
241 |
+
super().__init__()
|
242 |
+
|
243 |
+
self.bn = bn
|
244 |
+
|
245 |
+
self.groups=1
|
246 |
+
|
247 |
+
self.conv1 = nn.Conv2d(
|
248 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
249 |
+
)
|
250 |
+
|
251 |
+
self.conv2 = nn.Conv2d(
|
252 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
|
253 |
+
)
|
254 |
+
|
255 |
+
if self.bn==True:
|
256 |
+
self.bn1 = nn.BatchNorm2d(features)
|
257 |
+
self.bn2 = nn.BatchNorm2d(features)
|
258 |
+
|
259 |
+
self.activation = activation
|
260 |
+
|
261 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
262 |
+
|
263 |
+
def forward(self, x):
|
264 |
+
"""Forward pass.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
x (tensor): input
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
tensor: output
|
271 |
+
"""
|
272 |
+
|
273 |
+
out = self.activation(x)
|
274 |
+
out = self.conv1(out)
|
275 |
+
if self.bn==True:
|
276 |
+
out = self.bn1(out)
|
277 |
+
|
278 |
+
out = self.activation(out)
|
279 |
+
out = self.conv2(out)
|
280 |
+
if self.bn==True:
|
281 |
+
out = self.bn2(out)
|
282 |
+
|
283 |
+
if self.groups > 1:
|
284 |
+
out = self.conv_merge(out)
|
285 |
+
|
286 |
+
return self.skip_add.add(out, x)
|
287 |
+
|
288 |
+
# return out + x
|
289 |
+
|
290 |
+
|
291 |
+
class FeatureFusionBlock_custom(nn.Module):
|
292 |
+
"""Feature fusion block.
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
|
296 |
+
"""Init.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
features (int): number of features
|
300 |
+
"""
|
301 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
302 |
+
|
303 |
+
self.deconv = deconv
|
304 |
+
self.align_corners = align_corners
|
305 |
+
|
306 |
+
self.groups=1
|
307 |
+
|
308 |
+
self.expand = expand
|
309 |
+
out_features = features
|
310 |
+
if self.expand==True:
|
311 |
+
out_features = features//2
|
312 |
+
|
313 |
+
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
|
314 |
+
|
315 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
316 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
317 |
+
|
318 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
319 |
+
|
320 |
+
def forward(self, *xs):
|
321 |
+
"""Forward pass.
|
322 |
+
|
323 |
+
Returns:
|
324 |
+
tensor: output
|
325 |
+
"""
|
326 |
+
output = xs[0]
|
327 |
+
|
328 |
+
if len(xs) == 2:
|
329 |
+
res = self.resConfUnit1(xs[1])
|
330 |
+
output = self.skip_add.add(output, res)
|
331 |
+
# output += res
|
332 |
+
|
333 |
+
output = self.resConfUnit2(output)
|
334 |
+
|
335 |
+
output = nn.functional.interpolate(
|
336 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
337 |
+
)
|
338 |
+
|
339 |
+
output = self.out_conv(output)
|
340 |
+
|
341 |
+
return output
|
342 |
+
|
extralibs/midas/midas/dpt_depth.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from .base_model import BaseModel
|
6 |
+
from .blocks import (
|
7 |
+
FeatureFusionBlock,
|
8 |
+
FeatureFusionBlock_custom,
|
9 |
+
Interpolate,
|
10 |
+
_make_encoder,
|
11 |
+
forward_vit,
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
def _make_fusion_block(features, use_bn):
|
16 |
+
return FeatureFusionBlock_custom(
|
17 |
+
features,
|
18 |
+
nn.ReLU(False),
|
19 |
+
deconv=False,
|
20 |
+
bn=use_bn,
|
21 |
+
expand=False,
|
22 |
+
align_corners=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
class DPT(BaseModel):
|
27 |
+
def __init__(
|
28 |
+
self,
|
29 |
+
head,
|
30 |
+
features=256,
|
31 |
+
backbone="vitb_rn50_384",
|
32 |
+
readout="project",
|
33 |
+
channels_last=False,
|
34 |
+
use_bn=False,
|
35 |
+
):
|
36 |
+
|
37 |
+
super(DPT, self).__init__()
|
38 |
+
|
39 |
+
self.channels_last = channels_last
|
40 |
+
|
41 |
+
hooks = {
|
42 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
43 |
+
"vitb16_384": [2, 5, 8, 11],
|
44 |
+
"vitl16_384": [5, 11, 17, 23],
|
45 |
+
}
|
46 |
+
|
47 |
+
# Instantiate backbone and reassemble blocks
|
48 |
+
self.pretrained, self.scratch = _make_encoder(
|
49 |
+
backbone,
|
50 |
+
features,
|
51 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
52 |
+
groups=1,
|
53 |
+
expand=False,
|
54 |
+
exportable=False,
|
55 |
+
hooks=hooks[backbone],
|
56 |
+
use_readout=readout,
|
57 |
+
)
|
58 |
+
|
59 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
60 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
61 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
62 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
63 |
+
|
64 |
+
self.scratch.output_conv = head
|
65 |
+
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
if self.channels_last == True:
|
69 |
+
x.contiguous(memory_format=torch.channels_last)
|
70 |
+
|
71 |
+
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
72 |
+
|
73 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
74 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
75 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
76 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
77 |
+
|
78 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
79 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
80 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
81 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
82 |
+
|
83 |
+
out = self.scratch.output_conv(path_1)
|
84 |
+
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
class DPTDepthModel(DPT):
|
89 |
+
def __init__(self, path=None, non_negative=True, **kwargs):
|
90 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
91 |
+
|
92 |
+
head = nn.Sequential(
|
93 |
+
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
94 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
95 |
+
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
96 |
+
nn.ReLU(True),
|
97 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
98 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
99 |
+
nn.Identity(),
|
100 |
+
)
|
101 |
+
|
102 |
+
super().__init__(head, **kwargs)
|
103 |
+
|
104 |
+
if path is not None:
|
105 |
+
self.load(path)
|
106 |
+
print("Midas depth estimation model loaded.")
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
return super().forward(x).squeeze(dim=1)
|
110 |
+
|
extralibs/midas/midas/midas_net.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=256, non_negative=True):
|
17 |
+
"""Init.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
path (str, optional): Path to saved model. Defaults to None.
|
21 |
+
features (int, optional): Number of features. Defaults to 256.
|
22 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
23 |
+
"""
|
24 |
+
print("Loading weights: ", path)
|
25 |
+
|
26 |
+
super(MidasNet, self).__init__()
|
27 |
+
|
28 |
+
use_pretrained = False if path is None else True
|
29 |
+
|
30 |
+
self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
|
31 |
+
|
32 |
+
self.scratch.refinenet4 = FeatureFusionBlock(features)
|
33 |
+
self.scratch.refinenet3 = FeatureFusionBlock(features)
|
34 |
+
self.scratch.refinenet2 = FeatureFusionBlock(features)
|
35 |
+
self.scratch.refinenet1 = FeatureFusionBlock(features)
|
36 |
+
|
37 |
+
self.scratch.output_conv = nn.Sequential(
|
38 |
+
nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
|
39 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
40 |
+
nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
|
41 |
+
nn.ReLU(True),
|
42 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
43 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
44 |
+
)
|
45 |
+
|
46 |
+
if path:
|
47 |
+
self.load(path)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
"""Forward pass.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
x (tensor): input data (image)
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
tensor: depth
|
57 |
+
"""
|
58 |
+
|
59 |
+
layer_1 = self.pretrained.layer1(x)
|
60 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
61 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
62 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
63 |
+
|
64 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
65 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
66 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
67 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
68 |
+
|
69 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
70 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
71 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
72 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
73 |
+
|
74 |
+
out = self.scratch.output_conv(path_1)
|
75 |
+
|
76 |
+
return torch.squeeze(out, dim=1)
|
extralibs/midas/midas/midas_net_custom.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
|
2 |
+
This file contains code that is adapted from
|
3 |
+
https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
from .base_model import BaseModel
|
9 |
+
from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
|
10 |
+
|
11 |
+
|
12 |
+
class MidasNet_small(BaseModel):
|
13 |
+
"""Network for monocular depth estimation.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
|
17 |
+
blocks={'expand': True}):
|
18 |
+
"""Init.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
path (str, optional): Path to saved model. Defaults to None.
|
22 |
+
features (int, optional): Number of features. Defaults to 256.
|
23 |
+
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
|
24 |
+
"""
|
25 |
+
print("Loading weights: ", path)
|
26 |
+
|
27 |
+
super(MidasNet_small, self).__init__()
|
28 |
+
|
29 |
+
use_pretrained = False if path else True
|
30 |
+
|
31 |
+
self.channels_last = channels_last
|
32 |
+
self.blocks = blocks
|
33 |
+
self.backbone = backbone
|
34 |
+
|
35 |
+
self.groups = 1
|
36 |
+
|
37 |
+
features1=features
|
38 |
+
features2=features
|
39 |
+
features3=features
|
40 |
+
features4=features
|
41 |
+
self.expand = False
|
42 |
+
if "expand" in self.blocks and self.blocks['expand'] == True:
|
43 |
+
self.expand = True
|
44 |
+
features1=features
|
45 |
+
features2=features*2
|
46 |
+
features3=features*4
|
47 |
+
features4=features*8
|
48 |
+
|
49 |
+
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
|
50 |
+
|
51 |
+
self.scratch.activation = nn.ReLU(False)
|
52 |
+
|
53 |
+
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
54 |
+
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
55 |
+
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
|
56 |
+
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
|
57 |
+
|
58 |
+
|
59 |
+
self.scratch.output_conv = nn.Sequential(
|
60 |
+
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
|
61 |
+
Interpolate(scale_factor=2, mode="bilinear"),
|
62 |
+
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
|
63 |
+
self.scratch.activation,
|
64 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
65 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
66 |
+
nn.Identity(),
|
67 |
+
)
|
68 |
+
|
69 |
+
if path:
|
70 |
+
self.load(path)
|
71 |
+
|
72 |
+
|
73 |
+
def forward(self, x):
|
74 |
+
"""Forward pass.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
x (tensor): input data (image)
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
tensor: depth
|
81 |
+
"""
|
82 |
+
if self.channels_last==True:
|
83 |
+
print("self.channels_last = ", self.channels_last)
|
84 |
+
x.contiguous(memory_format=torch.channels_last)
|
85 |
+
|
86 |
+
|
87 |
+
layer_1 = self.pretrained.layer1(x)
|
88 |
+
layer_2 = self.pretrained.layer2(layer_1)
|
89 |
+
layer_3 = self.pretrained.layer3(layer_2)
|
90 |
+
layer_4 = self.pretrained.layer4(layer_3)
|
91 |
+
|
92 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
93 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
94 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
95 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
96 |
+
|
97 |
+
|
98 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
99 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
100 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
101 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
102 |
+
|
103 |
+
out = self.scratch.output_conv(path_1)
|
104 |
+
|
105 |
+
return torch.squeeze(out, dim=1)
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
def fuse_model(m):
|
110 |
+
prev_previous_type = nn.Identity()
|
111 |
+
prev_previous_name = ''
|
112 |
+
previous_type = nn.Identity()
|
113 |
+
previous_name = ''
|
114 |
+
for name, module in m.named_modules():
|
115 |
+
if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
|
116 |
+
# print("FUSED ", prev_previous_name, previous_name, name)
|
117 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
|
118 |
+
elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
|
119 |
+
# print("FUSED ", prev_previous_name, previous_name)
|
120 |
+
torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
|
121 |
+
# elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
|
122 |
+
# print("FUSED ", previous_name, name)
|
123 |
+
# torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
|
124 |
+
|
125 |
+
prev_previous_type = previous_type
|
126 |
+
prev_previous_name = previous_name
|
127 |
+
previous_type = type(module)
|
128 |
+
previous_name = name
|
extralibs/midas/midas/transforms.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
|
7 |
+
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
|
8 |
+
|
9 |
+
Args:
|
10 |
+
sample (dict): sample
|
11 |
+
size (tuple): image size
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
tuple: new size
|
15 |
+
"""
|
16 |
+
shape = list(sample["disparity"].shape)
|
17 |
+
|
18 |
+
if shape[0] >= size[0] and shape[1] >= size[1]:
|
19 |
+
return sample
|
20 |
+
|
21 |
+
scale = [0, 0]
|
22 |
+
scale[0] = size[0] / shape[0]
|
23 |
+
scale[1] = size[1] / shape[1]
|
24 |
+
|
25 |
+
scale = max(scale)
|
26 |
+
|
27 |
+
shape[0] = math.ceil(scale * shape[0])
|
28 |
+
shape[1] = math.ceil(scale * shape[1])
|
29 |
+
|
30 |
+
# resize
|
31 |
+
sample["image"] = cv2.resize(
|
32 |
+
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
|
33 |
+
)
|
34 |
+
|
35 |
+
sample["disparity"] = cv2.resize(
|
36 |
+
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
|
37 |
+
)
|
38 |
+
sample["mask"] = cv2.resize(
|
39 |
+
sample["mask"].astype(np.float32),
|
40 |
+
tuple(shape[::-1]),
|
41 |
+
interpolation=cv2.INTER_NEAREST,
|
42 |
+
)
|
43 |
+
sample["mask"] = sample["mask"].astype(bool)
|
44 |
+
|
45 |
+
return tuple(shape)
|
46 |
+
|
47 |
+
|
48 |
+
class Resize(object):
|
49 |
+
"""Resize sample to given size (width, height).
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
width,
|
55 |
+
height,
|
56 |
+
resize_target=True,
|
57 |
+
keep_aspect_ratio=False,
|
58 |
+
ensure_multiple_of=1,
|
59 |
+
resize_method="lower_bound",
|
60 |
+
image_interpolation_method=cv2.INTER_AREA,
|
61 |
+
):
|
62 |
+
"""Init.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
width (int): desired output width
|
66 |
+
height (int): desired output height
|
67 |
+
resize_target (bool, optional):
|
68 |
+
True: Resize the full sample (image, mask, target).
|
69 |
+
False: Resize image only.
|
70 |
+
Defaults to True.
|
71 |
+
keep_aspect_ratio (bool, optional):
|
72 |
+
True: Keep the aspect ratio of the input sample.
|
73 |
+
Output sample might not have the given width and height, and
|
74 |
+
resize behaviour depends on the parameter 'resize_method'.
|
75 |
+
Defaults to False.
|
76 |
+
ensure_multiple_of (int, optional):
|
77 |
+
Output width and height is constrained to be multiple of this parameter.
|
78 |
+
Defaults to 1.
|
79 |
+
resize_method (str, optional):
|
80 |
+
"lower_bound": Output will be at least as large as the given size.
|
81 |
+
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
|
82 |
+
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
|
83 |
+
Defaults to "lower_bound".
|
84 |
+
"""
|
85 |
+
self.__width = width
|
86 |
+
self.__height = height
|
87 |
+
|
88 |
+
self.__resize_target = resize_target
|
89 |
+
self.__keep_aspect_ratio = keep_aspect_ratio
|
90 |
+
self.__multiple_of = ensure_multiple_of
|
91 |
+
self.__resize_method = resize_method
|
92 |
+
self.__image_interpolation_method = image_interpolation_method
|
93 |
+
|
94 |
+
def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
|
95 |
+
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
96 |
+
|
97 |
+
if max_val is not None and y > max_val:
|
98 |
+
y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
99 |
+
|
100 |
+
if y < min_val:
|
101 |
+
y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
|
102 |
+
|
103 |
+
return y
|
104 |
+
|
105 |
+
def get_size(self, width, height):
|
106 |
+
# determine new height and width
|
107 |
+
scale_height = self.__height / height
|
108 |
+
scale_width = self.__width / width
|
109 |
+
|
110 |
+
if self.__keep_aspect_ratio:
|
111 |
+
if self.__resize_method == "lower_bound":
|
112 |
+
# scale such that output size is lower bound
|
113 |
+
if scale_width > scale_height:
|
114 |
+
# fit width
|
115 |
+
scale_height = scale_width
|
116 |
+
else:
|
117 |
+
# fit height
|
118 |
+
scale_width = scale_height
|
119 |
+
elif self.__resize_method == "upper_bound":
|
120 |
+
# scale such that output size is upper bound
|
121 |
+
if scale_width < scale_height:
|
122 |
+
# fit width
|
123 |
+
scale_height = scale_width
|
124 |
+
else:
|
125 |
+
# fit height
|
126 |
+
scale_width = scale_height
|
127 |
+
elif self.__resize_method == "minimal":
|
128 |
+
# scale as least as possbile
|
129 |
+
if abs(1 - scale_width) < abs(1 - scale_height):
|
130 |
+
# fit width
|
131 |
+
scale_height = scale_width
|
132 |
+
else:
|
133 |
+
# fit height
|
134 |
+
scale_width = scale_height
|
135 |
+
else:
|
136 |
+
raise ValueError(
|
137 |
+
f"resize_method {self.__resize_method} not implemented"
|
138 |
+
)
|
139 |
+
|
140 |
+
if self.__resize_method == "lower_bound":
|
141 |
+
new_height = self.constrain_to_multiple_of(
|
142 |
+
scale_height * height, min_val=self.__height
|
143 |
+
)
|
144 |
+
new_width = self.constrain_to_multiple_of(
|
145 |
+
scale_width * width, min_val=self.__width
|
146 |
+
)
|
147 |
+
elif self.__resize_method == "upper_bound":
|
148 |
+
new_height = self.constrain_to_multiple_of(
|
149 |
+
scale_height * height, max_val=self.__height
|
150 |
+
)
|
151 |
+
new_width = self.constrain_to_multiple_of(
|
152 |
+
scale_width * width, max_val=self.__width
|
153 |
+
)
|
154 |
+
elif self.__resize_method == "minimal":
|
155 |
+
new_height = self.constrain_to_multiple_of(scale_height * height)
|
156 |
+
new_width = self.constrain_to_multiple_of(scale_width * width)
|
157 |
+
else:
|
158 |
+
raise ValueError(f"resize_method {self.__resize_method} not implemented")
|
159 |
+
|
160 |
+
return (new_width, new_height)
|
161 |
+
|
162 |
+
def __call__(self, sample):
|
163 |
+
width, height = self.get_size(
|
164 |
+
sample["image"].shape[1], sample["image"].shape[0]
|
165 |
+
)
|
166 |
+
|
167 |
+
# resize sample
|
168 |
+
sample["image"] = cv2.resize(
|
169 |
+
sample["image"],
|
170 |
+
(width, height),
|
171 |
+
interpolation=self.__image_interpolation_method,
|
172 |
+
)
|
173 |
+
|
174 |
+
if self.__resize_target:
|
175 |
+
if "disparity" in sample:
|
176 |
+
sample["disparity"] = cv2.resize(
|
177 |
+
sample["disparity"],
|
178 |
+
(width, height),
|
179 |
+
interpolation=cv2.INTER_NEAREST,
|
180 |
+
)
|
181 |
+
|
182 |
+
if "depth" in sample:
|
183 |
+
sample["depth"] = cv2.resize(
|
184 |
+
sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
|
185 |
+
)
|
186 |
+
|
187 |
+
sample["mask"] = cv2.resize(
|
188 |
+
sample["mask"].astype(np.float32),
|
189 |
+
(width, height),
|
190 |
+
interpolation=cv2.INTER_NEAREST,
|
191 |
+
)
|
192 |
+
sample["mask"] = sample["mask"].astype(bool)
|
193 |
+
|
194 |
+
return sample
|
195 |
+
|
196 |
+
|
197 |
+
class NormalizeImage(object):
|
198 |
+
"""Normlize image by given mean and std.
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(self, mean, std):
|
202 |
+
self.__mean = mean
|
203 |
+
self.__std = std
|
204 |
+
|
205 |
+
def __call__(self, sample):
|
206 |
+
sample["image"] = (sample["image"] - self.__mean) / self.__std
|
207 |
+
|
208 |
+
return sample
|
209 |
+
|
210 |
+
|
211 |
+
class PrepareForNet(object):
|
212 |
+
"""Prepare sample for usage as network input.
|
213 |
+
"""
|
214 |
+
|
215 |
+
def __init__(self):
|
216 |
+
pass
|
217 |
+
|
218 |
+
def __call__(self, sample):
|
219 |
+
image = np.transpose(sample["image"], (2, 0, 1))
|
220 |
+
sample["image"] = np.ascontiguousarray(image).astype(np.float32)
|
221 |
+
|
222 |
+
if "mask" in sample:
|
223 |
+
sample["mask"] = sample["mask"].astype(np.float32)
|
224 |
+
sample["mask"] = np.ascontiguousarray(sample["mask"])
|
225 |
+
|
226 |
+
if "disparity" in sample:
|
227 |
+
disparity = sample["disparity"].astype(np.float32)
|
228 |
+
sample["disparity"] = np.ascontiguousarray(disparity)
|
229 |
+
|
230 |
+
if "depth" in sample:
|
231 |
+
depth = sample["depth"].astype(np.float32)
|
232 |
+
sample["depth"] = np.ascontiguousarray(depth)
|
233 |
+
|
234 |
+
return sample
|
extralibs/midas/midas/vit.py
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import timm
|
4 |
+
import types
|
5 |
+
import math
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
class Slice(nn.Module):
|
10 |
+
def __init__(self, start_index=1):
|
11 |
+
super(Slice, self).__init__()
|
12 |
+
self.start_index = start_index
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
return x[:, self.start_index :]
|
16 |
+
|
17 |
+
|
18 |
+
class AddReadout(nn.Module):
|
19 |
+
def __init__(self, start_index=1):
|
20 |
+
super(AddReadout, self).__init__()
|
21 |
+
self.start_index = start_index
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
if self.start_index == 2:
|
25 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
26 |
+
else:
|
27 |
+
readout = x[:, 0]
|
28 |
+
return x[:, self.start_index :] + readout.unsqueeze(1)
|
29 |
+
|
30 |
+
|
31 |
+
class ProjectReadout(nn.Module):
|
32 |
+
def __init__(self, in_features, start_index=1):
|
33 |
+
super(ProjectReadout, self).__init__()
|
34 |
+
self.start_index = start_index
|
35 |
+
|
36 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
40 |
+
features = torch.cat((x[:, self.start_index :], readout), -1)
|
41 |
+
|
42 |
+
return self.project(features)
|
43 |
+
|
44 |
+
|
45 |
+
class Transpose(nn.Module):
|
46 |
+
def __init__(self, dim0, dim1):
|
47 |
+
super(Transpose, self).__init__()
|
48 |
+
self.dim0 = dim0
|
49 |
+
self.dim1 = dim1
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
x = x.transpose(self.dim0, self.dim1)
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
activations = {}
|
57 |
+
def forward_vit(pretrained, x):
|
58 |
+
b, c, h, w = x.shape
|
59 |
+
|
60 |
+
glob = pretrained.model.forward_flex(x)
|
61 |
+
pretrained.activations = activations
|
62 |
+
|
63 |
+
layer_1 = pretrained.activations["1"]
|
64 |
+
layer_2 = pretrained.activations["2"]
|
65 |
+
layer_3 = pretrained.activations["3"]
|
66 |
+
layer_4 = pretrained.activations["4"]
|
67 |
+
|
68 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
69 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
70 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
71 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
72 |
+
|
73 |
+
unflatten = nn.Sequential(
|
74 |
+
nn.Unflatten(
|
75 |
+
2,
|
76 |
+
torch.Size(
|
77 |
+
[
|
78 |
+
h // pretrained.model.patch_size[1],
|
79 |
+
w // pretrained.model.patch_size[0],
|
80 |
+
]
|
81 |
+
),
|
82 |
+
)
|
83 |
+
)
|
84 |
+
|
85 |
+
if layer_1.ndim == 3:
|
86 |
+
layer_1 = unflatten(layer_1)
|
87 |
+
if layer_2.ndim == 3:
|
88 |
+
layer_2 = unflatten(layer_2)
|
89 |
+
if layer_3.ndim == 3:
|
90 |
+
layer_3 = unflatten(layer_3)
|
91 |
+
if layer_4.ndim == 3:
|
92 |
+
layer_4 = unflatten(layer_4)
|
93 |
+
|
94 |
+
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
95 |
+
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
96 |
+
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
97 |
+
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
98 |
+
|
99 |
+
return layer_1, layer_2, layer_3, layer_4
|
100 |
+
|
101 |
+
|
102 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
103 |
+
posemb_tok, posemb_grid = (
|
104 |
+
posemb[:, : self.start_index],
|
105 |
+
posemb[0, self.start_index :],
|
106 |
+
)
|
107 |
+
|
108 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
109 |
+
|
110 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
111 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
112 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
113 |
+
|
114 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
115 |
+
|
116 |
+
return posemb
|
117 |
+
|
118 |
+
|
119 |
+
def forward_flex(self, x):
|
120 |
+
b, c, h, w = x.shape
|
121 |
+
|
122 |
+
pos_embed = self._resize_pos_embed(
|
123 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
124 |
+
)
|
125 |
+
|
126 |
+
B = x.shape[0]
|
127 |
+
|
128 |
+
if hasattr(self.patch_embed, "backbone"):
|
129 |
+
x = self.patch_embed.backbone(x)
|
130 |
+
if isinstance(x, (list, tuple)):
|
131 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
132 |
+
|
133 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
134 |
+
|
135 |
+
if getattr(self, "dist_token", None) is not None:
|
136 |
+
cls_tokens = self.cls_token.expand(
|
137 |
+
B, -1, -1
|
138 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
139 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
140 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
141 |
+
else:
|
142 |
+
cls_tokens = self.cls_token.expand(
|
143 |
+
B, -1, -1
|
144 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
145 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
146 |
+
|
147 |
+
x = x + pos_embed
|
148 |
+
x = self.pos_drop(x)
|
149 |
+
|
150 |
+
for blk in self.blocks:
|
151 |
+
x = blk(x)
|
152 |
+
|
153 |
+
x = self.norm(x)
|
154 |
+
|
155 |
+
return x
|
156 |
+
|
157 |
+
|
158 |
+
def get_activation(name):
|
159 |
+
def hook(model, input, output):
|
160 |
+
activations[name] = output
|
161 |
+
return hook
|
162 |
+
|
163 |
+
|
164 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
165 |
+
if use_readout == "ignore":
|
166 |
+
readout_oper = [Slice(start_index)] * len(features)
|
167 |
+
elif use_readout == "add":
|
168 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
169 |
+
elif use_readout == "project":
|
170 |
+
readout_oper = [
|
171 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
172 |
+
]
|
173 |
+
else:
|
174 |
+
assert (
|
175 |
+
False
|
176 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
177 |
+
|
178 |
+
return readout_oper
|
179 |
+
|
180 |
+
|
181 |
+
def _make_vit_b16_backbone(
|
182 |
+
model,
|
183 |
+
features=[96, 192, 384, 768],
|
184 |
+
size=[384, 384],
|
185 |
+
hooks=[2, 5, 8, 11],
|
186 |
+
vit_features=768,
|
187 |
+
use_readout="ignore",
|
188 |
+
start_index=1,
|
189 |
+
):
|
190 |
+
pretrained = nn.Module()
|
191 |
+
|
192 |
+
pretrained.model = model
|
193 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
194 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
195 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
196 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
197 |
+
|
198 |
+
pretrained.activations = activations
|
199 |
+
|
200 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
201 |
+
|
202 |
+
# 32, 48, 136, 384
|
203 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
204 |
+
readout_oper[0],
|
205 |
+
Transpose(1, 2),
|
206 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
207 |
+
nn.Conv2d(
|
208 |
+
in_channels=vit_features,
|
209 |
+
out_channels=features[0],
|
210 |
+
kernel_size=1,
|
211 |
+
stride=1,
|
212 |
+
padding=0,
|
213 |
+
),
|
214 |
+
nn.ConvTranspose2d(
|
215 |
+
in_channels=features[0],
|
216 |
+
out_channels=features[0],
|
217 |
+
kernel_size=4,
|
218 |
+
stride=4,
|
219 |
+
padding=0,
|
220 |
+
bias=True,
|
221 |
+
dilation=1,
|
222 |
+
groups=1,
|
223 |
+
),
|
224 |
+
)
|
225 |
+
|
226 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
227 |
+
readout_oper[1],
|
228 |
+
Transpose(1, 2),
|
229 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
230 |
+
nn.Conv2d(
|
231 |
+
in_channels=vit_features,
|
232 |
+
out_channels=features[1],
|
233 |
+
kernel_size=1,
|
234 |
+
stride=1,
|
235 |
+
padding=0,
|
236 |
+
),
|
237 |
+
nn.ConvTranspose2d(
|
238 |
+
in_channels=features[1],
|
239 |
+
out_channels=features[1],
|
240 |
+
kernel_size=2,
|
241 |
+
stride=2,
|
242 |
+
padding=0,
|
243 |
+
bias=True,
|
244 |
+
dilation=1,
|
245 |
+
groups=1,
|
246 |
+
),
|
247 |
+
)
|
248 |
+
|
249 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
250 |
+
readout_oper[2],
|
251 |
+
Transpose(1, 2),
|
252 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
253 |
+
nn.Conv2d(
|
254 |
+
in_channels=vit_features,
|
255 |
+
out_channels=features[2],
|
256 |
+
kernel_size=1,
|
257 |
+
stride=1,
|
258 |
+
padding=0,
|
259 |
+
),
|
260 |
+
)
|
261 |
+
|
262 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
263 |
+
readout_oper[3],
|
264 |
+
Transpose(1, 2),
|
265 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
266 |
+
nn.Conv2d(
|
267 |
+
in_channels=vit_features,
|
268 |
+
out_channels=features[3],
|
269 |
+
kernel_size=1,
|
270 |
+
stride=1,
|
271 |
+
padding=0,
|
272 |
+
),
|
273 |
+
nn.Conv2d(
|
274 |
+
in_channels=features[3],
|
275 |
+
out_channels=features[3],
|
276 |
+
kernel_size=3,
|
277 |
+
stride=2,
|
278 |
+
padding=1,
|
279 |
+
),
|
280 |
+
)
|
281 |
+
|
282 |
+
pretrained.model.start_index = start_index
|
283 |
+
pretrained.model.patch_size = [16, 16]
|
284 |
+
|
285 |
+
# We inject this function into the VisionTransformer instances so that
|
286 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
287 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
288 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
289 |
+
_resize_pos_embed, pretrained.model
|
290 |
+
)
|
291 |
+
|
292 |
+
return pretrained
|
293 |
+
|
294 |
+
|
295 |
+
def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
|
296 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
297 |
+
|
298 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
299 |
+
return _make_vit_b16_backbone(
|
300 |
+
model,
|
301 |
+
features=[256, 512, 1024, 1024],
|
302 |
+
hooks=hooks,
|
303 |
+
vit_features=1024,
|
304 |
+
use_readout=use_readout,
|
305 |
+
)
|
306 |
+
|
307 |
+
|
308 |
+
def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
|
309 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
310 |
+
|
311 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
312 |
+
return _make_vit_b16_backbone(
|
313 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
314 |
+
)
|
315 |
+
|
316 |
+
|
317 |
+
def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
|
318 |
+
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
319 |
+
|
320 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
321 |
+
return _make_vit_b16_backbone(
|
322 |
+
model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
|
323 |
+
)
|
324 |
+
|
325 |
+
|
326 |
+
def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
|
327 |
+
model = timm.create_model(
|
328 |
+
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
329 |
+
)
|
330 |
+
|
331 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
332 |
+
return _make_vit_b16_backbone(
|
333 |
+
model,
|
334 |
+
features=[96, 192, 384, 768],
|
335 |
+
hooks=hooks,
|
336 |
+
use_readout=use_readout,
|
337 |
+
start_index=2,
|
338 |
+
)
|
339 |
+
|
340 |
+
|
341 |
+
def _make_vit_b_rn50_backbone(
|
342 |
+
model,
|
343 |
+
features=[256, 512, 768, 768],
|
344 |
+
size=[384, 384],
|
345 |
+
hooks=[0, 1, 8, 11],
|
346 |
+
vit_features=768,
|
347 |
+
use_vit_only=False,
|
348 |
+
use_readout="ignore",
|
349 |
+
start_index=1,
|
350 |
+
):
|
351 |
+
pretrained = nn.Module()
|
352 |
+
|
353 |
+
pretrained.model = model
|
354 |
+
|
355 |
+
if use_vit_only == True:
|
356 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
357 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
358 |
+
else:
|
359 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
360 |
+
get_activation("1")
|
361 |
+
)
|
362 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
363 |
+
get_activation("2")
|
364 |
+
)
|
365 |
+
|
366 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
367 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
368 |
+
|
369 |
+
pretrained.activations = activations
|
370 |
+
|
371 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
372 |
+
|
373 |
+
if use_vit_only == True:
|
374 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
375 |
+
readout_oper[0],
|
376 |
+
Transpose(1, 2),
|
377 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
378 |
+
nn.Conv2d(
|
379 |
+
in_channels=vit_features,
|
380 |
+
out_channels=features[0],
|
381 |
+
kernel_size=1,
|
382 |
+
stride=1,
|
383 |
+
padding=0,
|
384 |
+
),
|
385 |
+
nn.ConvTranspose2d(
|
386 |
+
in_channels=features[0],
|
387 |
+
out_channels=features[0],
|
388 |
+
kernel_size=4,
|
389 |
+
stride=4,
|
390 |
+
padding=0,
|
391 |
+
bias=True,
|
392 |
+
dilation=1,
|
393 |
+
groups=1,
|
394 |
+
),
|
395 |
+
)
|
396 |
+
|
397 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
398 |
+
readout_oper[1],
|
399 |
+
Transpose(1, 2),
|
400 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
401 |
+
nn.Conv2d(
|
402 |
+
in_channels=vit_features,
|
403 |
+
out_channels=features[1],
|
404 |
+
kernel_size=1,
|
405 |
+
stride=1,
|
406 |
+
padding=0,
|
407 |
+
),
|
408 |
+
nn.ConvTranspose2d(
|
409 |
+
in_channels=features[1],
|
410 |
+
out_channels=features[1],
|
411 |
+
kernel_size=2,
|
412 |
+
stride=2,
|
413 |
+
padding=0,
|
414 |
+
bias=True,
|
415 |
+
dilation=1,
|
416 |
+
groups=1,
|
417 |
+
),
|
418 |
+
)
|
419 |
+
else:
|
420 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
421 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
422 |
+
)
|
423 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
424 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
425 |
+
)
|
426 |
+
|
427 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
428 |
+
readout_oper[2],
|
429 |
+
Transpose(1, 2),
|
430 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
431 |
+
nn.Conv2d(
|
432 |
+
in_channels=vit_features,
|
433 |
+
out_channels=features[2],
|
434 |
+
kernel_size=1,
|
435 |
+
stride=1,
|
436 |
+
padding=0,
|
437 |
+
),
|
438 |
+
)
|
439 |
+
|
440 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
441 |
+
readout_oper[3],
|
442 |
+
Transpose(1, 2),
|
443 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
444 |
+
nn.Conv2d(
|
445 |
+
in_channels=vit_features,
|
446 |
+
out_channels=features[3],
|
447 |
+
kernel_size=1,
|
448 |
+
stride=1,
|
449 |
+
padding=0,
|
450 |
+
),
|
451 |
+
nn.Conv2d(
|
452 |
+
in_channels=features[3],
|
453 |
+
out_channels=features[3],
|
454 |
+
kernel_size=3,
|
455 |
+
stride=2,
|
456 |
+
padding=1,
|
457 |
+
),
|
458 |
+
)
|
459 |
+
|
460 |
+
pretrained.model.start_index = start_index
|
461 |
+
pretrained.model.patch_size = [16, 16]
|
462 |
+
|
463 |
+
# We inject this function into the VisionTransformer instances so that
|
464 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
465 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
466 |
+
|
467 |
+
# We inject this function into the VisionTransformer instances so that
|
468 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
469 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
470 |
+
_resize_pos_embed, pretrained.model
|
471 |
+
)
|
472 |
+
|
473 |
+
return pretrained
|
474 |
+
|
475 |
+
|
476 |
+
def _make_pretrained_vitb_rn50_384(
|
477 |
+
pretrained, use_readout="ignore", hooks=None, use_vit_only=False
|
478 |
+
):
|
479 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
480 |
+
|
481 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
482 |
+
return _make_vit_b_rn50_backbone(
|
483 |
+
model,
|
484 |
+
features=[256, 512, 768, 768],
|
485 |
+
size=[384, 384],
|
486 |
+
hooks=hooks,
|
487 |
+
use_vit_only=use_vit_only,
|
488 |
+
use_readout=use_readout,
|
489 |
+
)
|
extralibs/midas/utils.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utils for monoDepth."""
|
2 |
+
import sys
|
3 |
+
import re
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
def read_pfm(path):
|
10 |
+
"""Read pfm file.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
path (str): path to file
|
14 |
+
|
15 |
+
Returns:
|
16 |
+
tuple: (data, scale)
|
17 |
+
"""
|
18 |
+
with open(path, "rb") as file:
|
19 |
+
|
20 |
+
color = None
|
21 |
+
width = None
|
22 |
+
height = None
|
23 |
+
scale = None
|
24 |
+
endian = None
|
25 |
+
|
26 |
+
header = file.readline().rstrip()
|
27 |
+
if header.decode("ascii") == "PF":
|
28 |
+
color = True
|
29 |
+
elif header.decode("ascii") == "Pf":
|
30 |
+
color = False
|
31 |
+
else:
|
32 |
+
raise Exception("Not a PFM file: " + path)
|
33 |
+
|
34 |
+
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
|
35 |
+
if dim_match:
|
36 |
+
width, height = list(map(int, dim_match.groups()))
|
37 |
+
else:
|
38 |
+
raise Exception("Malformed PFM header.")
|
39 |
+
|
40 |
+
scale = float(file.readline().decode("ascii").rstrip())
|
41 |
+
if scale < 0:
|
42 |
+
# little-endian
|
43 |
+
endian = "<"
|
44 |
+
scale = -scale
|
45 |
+
else:
|
46 |
+
# big-endian
|
47 |
+
endian = ">"
|
48 |
+
|
49 |
+
data = np.fromfile(file, endian + "f")
|
50 |
+
shape = (height, width, 3) if color else (height, width)
|
51 |
+
|
52 |
+
data = np.reshape(data, shape)
|
53 |
+
data = np.flipud(data)
|
54 |
+
|
55 |
+
return data, scale
|
56 |
+
|
57 |
+
|
58 |
+
def write_pfm(path, image, scale=1):
|
59 |
+
"""Write pfm file.
|
60 |
+
|
61 |
+
Args:
|
62 |
+
path (str): pathto file
|
63 |
+
image (array): data
|
64 |
+
scale (int, optional): Scale. Defaults to 1.
|
65 |
+
"""
|
66 |
+
|
67 |
+
with open(path, "wb") as file:
|
68 |
+
color = None
|
69 |
+
|
70 |
+
if image.dtype.name != "float32":
|
71 |
+
raise Exception("Image dtype must be float32.")
|
72 |
+
|
73 |
+
image = np.flipud(image)
|
74 |
+
|
75 |
+
if len(image.shape) == 3 and image.shape[2] == 3: # color image
|
76 |
+
color = True
|
77 |
+
elif (
|
78 |
+
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
|
79 |
+
): # greyscale
|
80 |
+
color = False
|
81 |
+
else:
|
82 |
+
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
|
83 |
+
|
84 |
+
file.write("PF\n" if color else "Pf\n".encode())
|
85 |
+
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
|
86 |
+
|
87 |
+
endian = image.dtype.byteorder
|
88 |
+
|
89 |
+
if endian == "<" or endian == "=" and sys.byteorder == "little":
|
90 |
+
scale = -scale
|
91 |
+
|
92 |
+
file.write("%f\n".encode() % scale)
|
93 |
+
|
94 |
+
image.tofile(file)
|
95 |
+
|
96 |
+
|
97 |
+
def read_image(path):
|
98 |
+
"""Read image and output RGB image (0-1).
|
99 |
+
|
100 |
+
Args:
|
101 |
+
path (str): path to file
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
array: RGB image (0-1)
|
105 |
+
"""
|
106 |
+
img = cv2.imread(path)
|
107 |
+
|
108 |
+
if img.ndim == 2:
|
109 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
110 |
+
|
111 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
|
112 |
+
|
113 |
+
return img
|
114 |
+
|
115 |
+
|
116 |
+
def resize_image(img):
|
117 |
+
"""Resize image and make it fit for network.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
img (array): image
|
121 |
+
|
122 |
+
Returns:
|
123 |
+
tensor: data ready for network
|
124 |
+
"""
|
125 |
+
height_orig = img.shape[0]
|
126 |
+
width_orig = img.shape[1]
|
127 |
+
|
128 |
+
if width_orig > height_orig:
|
129 |
+
scale = width_orig / 384
|
130 |
+
else:
|
131 |
+
scale = height_orig / 384
|
132 |
+
|
133 |
+
height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
|
134 |
+
width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
|
135 |
+
|
136 |
+
img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
|
137 |
+
|
138 |
+
img_resized = (
|
139 |
+
torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
|
140 |
+
)
|
141 |
+
img_resized = img_resized.unsqueeze(0)
|
142 |
+
|
143 |
+
return img_resized
|
144 |
+
|
145 |
+
|
146 |
+
def resize_depth(depth, width, height):
|
147 |
+
"""Resize depth map and bring to CPU (numpy).
|
148 |
+
|
149 |
+
Args:
|
150 |
+
depth (tensor): depth
|
151 |
+
width (int): image width
|
152 |
+
height (int): image height
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
array: processed depth
|
156 |
+
"""
|
157 |
+
depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
|
158 |
+
|
159 |
+
depth_resized = cv2.resize(
|
160 |
+
depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
|
161 |
+
)
|
162 |
+
|
163 |
+
return depth_resized
|
164 |
+
|
165 |
+
def write_depth(path, depth, bits=1):
|
166 |
+
"""Write depth map to pfm and png file.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
path (str): filepath without extension
|
170 |
+
depth (array): depth
|
171 |
+
"""
|
172 |
+
write_pfm(path + ".pfm", depth.astype(np.float32))
|
173 |
+
|
174 |
+
depth_min = depth.min()
|
175 |
+
depth_max = depth.max()
|
176 |
+
|
177 |
+
max_val = (2**(8*bits))-1
|
178 |
+
|
179 |
+
if depth_max - depth_min > np.finfo("float").eps:
|
180 |
+
out = max_val * (depth - depth_min) / (depth_max - depth_min)
|
181 |
+
else:
|
182 |
+
out = np.zeros(depth.shape, dtype=depth.type)
|
183 |
+
|
184 |
+
if bits == 1:
|
185 |
+
cv2.imwrite(path + ".png", out.astype("uint8"))
|
186 |
+
elif bits == 2:
|
187 |
+
cv2.imwrite(path + ".png", out.astype("uint16"))
|
188 |
+
|
189 |
+
return
|
lvdm/models/ddpm3d.py
CHANGED
@@ -11,11 +11,10 @@ from einops import rearrange, repeat
|
|
11 |
|
12 |
import torch
|
13 |
import torch.nn as nn
|
14 |
-
from torch.optim.lr_scheduler import LambdaLR
|
15 |
-
from torchvision.utils import make_grid
|
16 |
import pytorch_lightning as pl
|
17 |
-
from
|
18 |
-
|
|
|
19 |
from lvdm.models.modules.distributions import normal_kl, DiagonalGaussianDistribution
|
20 |
from lvdm.models.modules.util import make_beta_schedule, extract_into_tensor, noise_like
|
21 |
from lvdm.models.modules.lora import inject_trainable_lora
|
@@ -1433,3 +1432,53 @@ class DiffusionWrapper(pl.LightningModule):
|
|
1433 |
|
1434 |
return out
|
1435 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
import torch
|
13 |
import torch.nn as nn
|
|
|
|
|
14 |
import pytorch_lightning as pl
|
15 |
+
from torchvision.utils import make_grid
|
16 |
+
from torch.optim.lr_scheduler import LambdaLR
|
17 |
+
from pytorch_lightning.utilities import rank_zero_only
|
18 |
from lvdm.models.modules.distributions import normal_kl, DiagonalGaussianDistribution
|
19 |
from lvdm.models.modules.util import make_beta_schedule, extract_into_tensor, noise_like
|
20 |
from lvdm.models.modules.lora import inject_trainable_lora
|
|
|
1432 |
|
1433 |
return out
|
1434 |
|
1435 |
+
|
1436 |
+
class T2VAdapterDepth(LatentDiffusion):
|
1437 |
+
def __init__(self, depth_stage_config, adapter_config, *args, **kwargs):
|
1438 |
+
super(T2VAdapterDepth, self).__init__(*args, **kwargs)
|
1439 |
+
self.adapter = instantiate_from_config(adapter_config)
|
1440 |
+
self.condtype = adapter_config.cond_name
|
1441 |
+
self.depth_stage_model = instantiate_from_config(depth_stage_config)
|
1442 |
+
|
1443 |
+
def prepare_midas_input(self, batch_x):
|
1444 |
+
# input: b,c,h,w
|
1445 |
+
x_midas = torch.nn.functional.interpolate(batch_x, size=(384, 384), mode='bicubic')
|
1446 |
+
return x_midas
|
1447 |
+
|
1448 |
+
@torch.no_grad()
|
1449 |
+
def get_batch_depth(self, batch_x, target_size, encode_bs=1):
|
1450 |
+
b, c, t, h, w = batch_x.shape
|
1451 |
+
merge_x = rearrange(batch_x, 'b c t h w -> (b t) c h w')
|
1452 |
+
split_x = torch.split(merge_x, encode_bs, dim=0)
|
1453 |
+
cond_depth_list = []
|
1454 |
+
for x in split_x:
|
1455 |
+
x_midas = self.prepare_midas_input(x)
|
1456 |
+
cond_depth = self.depth_stage_model(x_midas)
|
1457 |
+
cond_depth = torch.nn.functional.interpolate(
|
1458 |
+
cond_depth,
|
1459 |
+
size=target_size,
|
1460 |
+
mode="bicubic",
|
1461 |
+
align_corners=False,
|
1462 |
+
)
|
1463 |
+
depth_min, depth_max = torch.amin(cond_depth, dim=[1, 2, 3], keepdim=True), torch.amax(cond_depth, dim=[1, 2, 3], keepdim=True)
|
1464 |
+
cond_depth = 2. * (cond_depth - depth_min) / (depth_max - depth_min + 1e-7) - 1.
|
1465 |
+
cond_depth_list.append(cond_depth)
|
1466 |
+
batch_cond_depth=torch.cat(cond_depth_list, dim=0)
|
1467 |
+
batch_cond_depth = rearrange(batch_cond_depth, '(b t) c h w -> b c t h w', b=b, t=t)
|
1468 |
+
return batch_cond_depth
|
1469 |
+
|
1470 |
+
def get_adapter_features(self, extra_cond, encode_bs=1):
|
1471 |
+
b, c, t, h, w = extra_cond.shape
|
1472 |
+
## process in 2D manner
|
1473 |
+
merge_extra_cond = rearrange(extra_cond, 'b c t h w -> (b t) c h w')
|
1474 |
+
split_extra_cond = torch.split(merge_extra_cond, encode_bs, dim=0)
|
1475 |
+
features_adapter_list = []
|
1476 |
+
for extra_cond in split_extra_cond:
|
1477 |
+
features_adapter = self.adapter(extra_cond)
|
1478 |
+
features_adapter_list.append(features_adapter)
|
1479 |
+
merge_features_adapter_list = []
|
1480 |
+
for i in range(len(features_adapter_list[0])):
|
1481 |
+
merge_features_adapter = torch.cat([features_adapter_list[num][i] for num in range(len(features_adapter_list))], dim=0)
|
1482 |
+
merge_features_adapter_list.append(merge_features_adapter)
|
1483 |
+
merge_features_adapter_list = [rearrange(feature, '(b t) c h w -> b c t h w', b=b, t=t) for feature in merge_features_adapter_list]
|
1484 |
+
return merge_features_adapter_list
|
lvdm/models/modules/lora.py
CHANGED
@@ -622,7 +622,7 @@ def net_load_lora(net, checkpoint_path, alpha=1.0, remove=False):
|
|
622 |
state_dict = torch.load(checkpoint_path)
|
623 |
for k, v in state_dict.items():
|
624 |
state_dict[k] = v.to(net.device)
|
625 |
-
|
626 |
for key in state_dict:
|
627 |
if ".alpha" in key or key in visited:
|
628 |
continue
|
@@ -680,6 +680,83 @@ def change_lora(model, inject_lora=False, lora_scale=1.0, lora_path='', last_tim
|
|
680 |
net_load_lora(model, lora_path, alpha=lora_scale)
|
681 |
|
682 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
683 |
|
684 |
def load_safeloras(path, device="cpu"):
|
685 |
safeloras = safe_open(path, framework="pt", device=device)
|
|
|
622 |
state_dict = torch.load(checkpoint_path)
|
623 |
for k, v in state_dict.items():
|
624 |
state_dict[k] = v.to(net.device)
|
625 |
+
|
626 |
for key in state_dict:
|
627 |
if ".alpha" in key or key in visited:
|
628 |
continue
|
|
|
680 |
net_load_lora(model, lora_path, alpha=lora_scale)
|
681 |
|
682 |
|
683 |
+
def net_load_lora_v2(net, checkpoint_path, alpha=1.0, remove=False, origin_weight=None):
|
684 |
+
visited=[]
|
685 |
+
state_dict = torch.load(checkpoint_path)
|
686 |
+
for k, v in state_dict.items():
|
687 |
+
state_dict[k] = v.to(net.device)
|
688 |
+
|
689 |
+
for key in state_dict:
|
690 |
+
if ".alpha" in key or key in visited:
|
691 |
+
continue
|
692 |
+
layer_infos = key.split(".")[:-2] # remove lora_up and down weight
|
693 |
+
curr_layer = net
|
694 |
+
# find the target layer
|
695 |
+
temp_name = layer_infos.pop(0)
|
696 |
+
while len(layer_infos) > -1:
|
697 |
+
curr_layer = curr_layer.__getattr__(temp_name)
|
698 |
+
if len(layer_infos) > 0:
|
699 |
+
temp_name = layer_infos.pop(0)
|
700 |
+
elif len(layer_infos) == 0:
|
701 |
+
break
|
702 |
+
if curr_layer.__class__ not in [nn.Linear, nn.Conv2d]:
|
703 |
+
print('missing param at:', key)
|
704 |
+
continue
|
705 |
+
pair_keys = []
|
706 |
+
if "lora_down" in key:
|
707 |
+
pair_keys.append(key.replace("lora_down", "lora_up"))
|
708 |
+
pair_keys.append(key)
|
709 |
+
else:
|
710 |
+
pair_keys.append(key)
|
711 |
+
pair_keys.append(key.replace("lora_up", "lora_down"))
|
712 |
+
|
713 |
+
# storage weight
|
714 |
+
if origin_weight is None:
|
715 |
+
origin_weight = dict()
|
716 |
+
storage_key = key.replace("lora_down", "lora").replace("lora_up", "lora")
|
717 |
+
origin_weight[storage_key] = curr_layer.weight.data.clone()
|
718 |
+
else:
|
719 |
+
storage_key = key.replace("lora_down", "lora").replace("lora_up", "lora")
|
720 |
+
if storage_key not in origin_weight.keys():
|
721 |
+
origin_weight[storage_key] = curr_layer.weight.data.clone()
|
722 |
+
|
723 |
+
|
724 |
+
# update
|
725 |
+
if len(state_dict[pair_keys[0]].shape) == 4:
|
726 |
+
# for conv
|
727 |
+
if remove:
|
728 |
+
curr_layer.weight.data = origin_weight[storage_key].clone()
|
729 |
+
else:
|
730 |
+
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
|
731 |
+
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
|
732 |
+
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
733 |
+
else:
|
734 |
+
# for linear
|
735 |
+
if remove:
|
736 |
+
curr_layer.weight.data = origin_weight[storage_key].clone()
|
737 |
+
else:
|
738 |
+
weight_up = state_dict[pair_keys[0]].to(torch.float32)
|
739 |
+
weight_down = state_dict[pair_keys[1]].to(torch.float32)
|
740 |
+
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
|
741 |
+
|
742 |
+
# update visited list
|
743 |
+
for item in pair_keys:
|
744 |
+
visited.append(item)
|
745 |
+
print('load_weight_num:',len(visited))
|
746 |
+
return origin_weight
|
747 |
+
|
748 |
+
def change_lora_v2(model, inject_lora=False, lora_scale=1.0, lora_path='', last_time_lora='', last_time_lora_scale=1.0, origin_weight=None):
|
749 |
+
# remove lora
|
750 |
+
if last_time_lora != '':
|
751 |
+
origin_weight = net_load_lora_v2(model, last_time_lora, alpha=last_time_lora_scale, remove=True, origin_weight=origin_weight)
|
752 |
+
# add new lora
|
753 |
+
if inject_lora:
|
754 |
+
origin_weight = net_load_lora_v2(model, lora_path, alpha=lora_scale, origin_weight=origin_weight)
|
755 |
+
return origin_weight
|
756 |
+
|
757 |
+
|
758 |
+
|
759 |
+
|
760 |
|
761 |
def load_safeloras(path, device="cpu"):
|
762 |
safeloras = safe_open(path, framework="pt", device=device)
|
lvdm/models/modules/openaimodel3d.py
CHANGED
@@ -629,7 +629,7 @@ class UNetModel(nn.Module):
|
|
629 |
self.middle_block.apply(convert_module_to_f32)
|
630 |
self.output_blocks.apply(convert_module_to_f32)
|
631 |
|
632 |
-
def forward(self, x, timesteps=None, time_emb_replace=None, context=None, y=None, **kwargs):
|
633 |
"""
|
634 |
Apply the model to an input batch.
|
635 |
:param x: an [N x C x ...] Tensor of inputs.
|
@@ -651,9 +651,17 @@ class UNetModel(nn.Module):
|
|
651 |
emb = emb + self.label_emb(y)
|
652 |
|
653 |
h = x.type(self.dtype)
|
654 |
-
|
|
|
655 |
h = module(h, emb, context, **kwargs)
|
|
|
|
|
|
|
|
|
656 |
hs.append(h)
|
|
|
|
|
|
|
657 |
h = self.middle_block(h, emb, context, **kwargs)
|
658 |
for module in self.output_blocks:
|
659 |
h = th.cat([h, hs.pop()], dim=1)
|
|
|
629 |
self.middle_block.apply(convert_module_to_f32)
|
630 |
self.output_blocks.apply(convert_module_to_f32)
|
631 |
|
632 |
+
def forward(self, x, timesteps=None, time_emb_replace=None, context=None, features_adapter=None, y=None, **kwargs):
|
633 |
"""
|
634 |
Apply the model to an input batch.
|
635 |
:param x: an [N x C x ...] Tensor of inputs.
|
|
|
651 |
emb = emb + self.label_emb(y)
|
652 |
|
653 |
h = x.type(self.dtype)
|
654 |
+
adapter_idx = 0
|
655 |
+
for id, module in enumerate(self.input_blocks):
|
656 |
h = module(h, emb, context, **kwargs)
|
657 |
+
## plug-in adapter features
|
658 |
+
if ((id+1)%3 == 0) and features_adapter is not None:
|
659 |
+
h = h + features_adapter[adapter_idx]
|
660 |
+
adapter_idx += 1
|
661 |
hs.append(h)
|
662 |
+
if features_adapter is not None:
|
663 |
+
assert len(features_adapter)==adapter_idx, 'Mismatch features adapter'
|
664 |
+
|
665 |
h = self.middle_block(h, emb, context, **kwargs)
|
666 |
for module in self.output_blocks:
|
667 |
h = th.cat([h, hs.pop()], dim=1)
|
lvdm/samplers/ddim.py
CHANGED
@@ -197,7 +197,7 @@ class DDIMSampler(object):
|
|
197 |
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
198 |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
199 |
unconditional_guidance_scale=1., unconditional_conditioning=None, sample_noise=None,
|
200 |
-
cond_fn=None,uc_type=None,
|
201 |
**kwargs,
|
202 |
):
|
203 |
b, *_, device = *x.shape, x.device
|
@@ -206,15 +206,15 @@ class DDIMSampler(object):
|
|
206 |
else:
|
207 |
is_video = False
|
208 |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
209 |
-
e_t = self.model.apply_model(x, t, c, **
|
210 |
else:
|
211 |
# with unconditional condition
|
212 |
if isinstance(c, torch.Tensor):
|
213 |
-
e_t = self.model.apply_model(x, t, c, **
|
214 |
-
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **
|
215 |
elif isinstance(c, dict):
|
216 |
-
e_t = self.model.apply_model(x, t, c, **
|
217 |
-
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **
|
218 |
else:
|
219 |
raise NotImplementedError
|
220 |
# text cfg
|
|
|
197 |
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
198 |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
199 |
unconditional_guidance_scale=1., unconditional_conditioning=None, sample_noise=None,
|
200 |
+
cond_fn=None, uc_type=None,
|
201 |
**kwargs,
|
202 |
):
|
203 |
b, *_, device = *x.shape, x.device
|
|
|
206 |
else:
|
207 |
is_video = False
|
208 |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
209 |
+
e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
|
210 |
else:
|
211 |
# with unconditional condition
|
212 |
if isinstance(c, torch.Tensor):
|
213 |
+
e_t = self.model.apply_model(x, t, c, **kwargs)
|
214 |
+
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
|
215 |
elif isinstance(c, dict):
|
216 |
+
e_t = self.model.apply_model(x, t, c, **kwargs)
|
217 |
+
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
|
218 |
else:
|
219 |
raise NotImplementedError
|
220 |
# text cfg
|
lvdm/utils/saving_utils.py
CHANGED
@@ -14,7 +14,7 @@ from torchvision.utils import make_grid
|
|
14 |
from torch import Tensor
|
15 |
from torchvision.transforms.functional import to_tensor
|
16 |
|
17 |
-
|
18 |
def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None):
|
19 |
"""
|
20 |
video: torch.Tensor, b,c,t,h,w, 0-1
|
@@ -32,7 +32,7 @@ def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None):
|
|
32 |
#print(f'Save video to {savepath}')
|
33 |
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
34 |
|
35 |
-
# ----------------------------------------------------------------------------------------------
|
36 |
def savenp2sheet(imgs, savepath, nrow=None):
|
37 |
""" save multiple imgs (in numpy array type) to a img sheet.
|
38 |
img sheet is one row.
|
|
|
14 |
from torch import Tensor
|
15 |
from torchvision.transforms.functional import to_tensor
|
16 |
|
17 |
+
|
18 |
def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None):
|
19 |
"""
|
20 |
video: torch.Tensor, b,c,t,h,w, 0-1
|
|
|
32 |
#print(f'Save video to {savepath}')
|
33 |
torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
|
34 |
|
35 |
+
# ----------------------------------------------------------------------------------------------
|
36 |
def savenp2sheet(imgs, savepath, nrow=None):
|
37 |
""" save multiple imgs (in numpy array type) to a img sheet.
|
38 |
img sheet is one row.
|