import numpy as np import cv2 import os import time import imageio from tqdm import tqdm from PIL import Image import os import sys sys.path.insert(1, os.path.join(sys.path[0], '..')) import torch import torchvision from torchvision.utils import make_grid from torch import Tensor from torchvision.transforms.functional import to_tensor def tensor_to_mp4(video, savepath, fps, rescale=True, nrow=None): """ video: torch.Tensor, b,c,t,h,w, 0-1 if -1~1, enable rescale=True """ n = video.shape[0] video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w nrow = int(np.sqrt(n)) if nrow is None else nrow frame_grids = [torchvision.utils.make_grid(framesheet, nrow=nrow) for framesheet in video] # [3, grid_h, grid_w] grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [T, 3, grid_h, grid_w] grid = torch.clamp(grid.float(), -1., 1.) if rescale: grid = (grid + 1.0) / 2.0 grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3] #print(f'Save video to {savepath}') torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'}) # ---------------------------------------------------------------------------------------------- def savenp2sheet(imgs, savepath, nrow=None): """ save multiple imgs (in numpy array type) to a img sheet. img sheet is one row. imgs: np array of size [N, H, W, 3] or List[array] with array size = [H,W,3] """ if imgs.ndim == 4: img_list = [imgs[i] for i in range(imgs.shape[0])] imgs = img_list imgs_new = [] for i, img in enumerate(imgs): if img.ndim == 3 and img.shape[0] == 3: img = np.transpose(img,(1,2,0)) assert(img.ndim == 3 and img.shape[-1] == 3), img.shape # h,w,3 img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) imgs_new.append(img) n = len(imgs) if nrow is not None: n_cols = nrow else: n_cols=int(n**0.5) n_rows=int(np.ceil(n/n_cols)) print(n_cols) print(n_rows) imgsheet = cv2.vconcat([cv2.hconcat(imgs_new[i*n_cols:(i+1)*n_cols]) for i in range(n_rows)]) cv2.imwrite(savepath, imgsheet) print(f'saved in {savepath}') # ---------------------------------------------------------------------------------------------- def save_np_to_img(img, path, norm=True): if norm: img = (img + 1) / 2 * 255 img = img.astype(np.uint8) image = Image.fromarray(img) image.save(path, q=95) # ---------------------------------------------------------------------------------------------- def npz_to_imgsheet_5d(data_path, res_dir, nrow=None,): if isinstance(data_path, str): imgs = np.load(data_path)['arr_0'] # NTHWC elif isinstance(data_path, np.ndarray): imgs = data_path else: raise Exception if os.path.isdir(res_dir): res_path = os.path.join(res_dir, f'samples.jpg') else: assert(res_dir.endswith('.jpg')) res_path = res_dir imgs = np.concatenate([imgs[i] for i in range(imgs.shape[0])], axis=0) savenp2sheet(imgs, res_path, nrow=nrow) # ---------------------------------------------------------------------------------------------- def npz_to_imgsheet_4d(data_path, res_path, nrow=None,): if isinstance(data_path, str): imgs = np.load(data_path)['arr_0'] # NHWC elif isinstance(data_path, np.ndarray): imgs = data_path else: raise Exception print(imgs.shape) savenp2sheet(imgs, res_path, nrow=nrow) # ---------------------------------------------------------------------------------------------- def tensor_to_imgsheet(tensor, save_path): """ save a batch of videos in one image sheet with shape of [batch_size * num_frames]. data: [b,c,t,h,w] """ assert(tensor.dim() == 5) b,c,t,h,w = tensor.shape imgs = [tensor[bi,:,ti, :, :] for bi in range(b) for ti in range(t)] torchvision.utils.save_image(imgs, save_path, normalize=True, nrow=t) # ---------------------------------------------------------------------------------------------- def npz_to_frames(data_path, res_dir, norm, num_frames=None, num_samples=None): start = time.time() arr = np.load(data_path) imgs = arr['arr_0'] # [N, T, H, W, 3] print('original data shape: ', imgs.shape) if num_samples is not None: imgs = imgs[:num_samples, :, :, :, :] print('after sample selection: ', imgs.shape) if num_frames is not None: imgs = imgs[:, :num_frames, :, :, :] print('after frame selection: ', imgs.shape) for vid in tqdm(range(imgs.shape[0]), desc='Video'): video_dir = os.path.join(res_dir, f'video{vid:04d}') os.makedirs(video_dir, exist_ok=True) for fid in range(imgs.shape[1]): frame = imgs[vid, fid, :, :, :] #HW3 save_np_to_img(frame, os.path.join(video_dir, f'frame{fid:04d}.jpg'), norm=norm) print('Finish') print(f'Total time = {time.time()- start}') # ---------------------------------------------------------------------------------------------- def npz_to_gifs(data_path, res_dir, duration=0.2, start_idx=0, num_videos=None, mode='gif'): os.makedirs(res_dir, exist_ok=True) if isinstance(data_path, str): imgs = np.load(data_path)['arr_0'] # NTHWC elif isinstance(data_path, np.ndarray): imgs = data_path else: raise Exception for i in range(imgs.shape[0]): frames = [imgs[i,j,:,:,:] for j in range(imgs[i].shape[0])] # [(h,w,3)] if mode == 'gif': imageio.mimwrite(os.path.join(res_dir, f'samples_{start_idx+i}.gif'), frames, format='GIF', duration=duration) elif mode == 'mp4': frames = [torch.from_numpy(frame) for frame in frames] frames = torch.stack(frames, dim=0).to(torch.uint8) # [T, H, W, C] torchvision.io.write_video(os.path.join(res_dir, f'samples_{start_idx+i}.mp4'), frames, fps=0.5, video_codec='h264', options={'crf': '10'}) if i+ 1 == num_videos: break # ---------------------------------------------------------------------------------------------- def fill_with_black_squares(video, desired_len: int) -> Tensor: if len(video) >= desired_len: return video return torch.cat([ video, torch.zeros_like(video[0]).unsqueeze(0).repeat(desired_len - len(video), 1, 1, 1), ], dim=0) # ---------------------------------------------------------------------------------------------- def load_num_videos(data_path, num_videos): # data_path can be either data_path of np array if isinstance(data_path, str): videos = np.load(data_path)['arr_0'] # NTHWC elif isinstance(data_path, np.ndarray): videos = data_path else: raise Exception if num_videos is not None: videos = videos[:num_videos, :, :, :, :] return videos # ---------------------------------------------------------------------------------------------- def npz_to_video_grid(data_path, out_path, num_frames=None, fps=8, num_videos=None, nrow=None, verbose=True): if isinstance(data_path, str): videos = load_num_videos(data_path, num_videos) elif isinstance(data_path, np.ndarray): videos = data_path else: raise Exception n,t,h,w,c = videos.shape videos_th = [] for i in range(n): video = videos[i, :,:,:,:] images = [video[j, :,:,:] for j in range(t)] images = [to_tensor(img) for img in images] video = torch.stack(images) videos_th.append(video) if num_frames is None: num_frames = videos.shape[1] if verbose: videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW else: videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W] if nrow is None: nrow = int(np.ceil(np.sqrt(n))) if verbose: frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')] else: frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids] if os.path.dirname(out_path) != "": os.makedirs(os.path.dirname(out_path), exist_ok=True) frame_grids = (torch.stack(frame_grids) * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C] torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'}) # ---------------------------------------------------------------------------------------------- def npz_to_gif_grid(data_path, out_path, n_cols=None, num_videos=20): arr = np.load(data_path) imgs = arr['arr_0'] # [N, T, H, W, 3] imgs = imgs[:num_videos] n, t, h, w, c = imgs.shape assert(n == num_videos) n_cols = n_cols if n_cols else imgs.shape[0] n_rows = np.ceil(imgs.shape[0] / n_cols).astype(np.int8) H, W = h * n_rows, w * n_cols grid = np.zeros((t, H, W, c), dtype=np.uint8) for i in range(n_rows): for j in range(n_cols): if i*n_cols+j < imgs.shape[0]: grid[:, i*h:(i+1)*h, j*w:(j+1)*w, :] = imgs[i*n_cols+j, :, :, :, :] videos = [grid[i] for i in range(grid.shape[0])] # grid: TH'W'C imageio.mimwrite(out_path, videos, format='GIF', duration=0.5,palettesize=256) # ---------------------------------------------------------------------------------------------- def torch_to_video_grid(videos, out_path, num_frames, fps, num_videos=None, nrow=None, verbose=True): """ videos: -1 ~ 1, torch.Tensor, BCTHW """ n,t,h,w,c = videos.shape videos_th = [videos[i, ...] for i in range(n)] if verbose: videos = [fill_with_black_squares(v, num_frames) for v in tqdm(videos_th, desc='Adding empty frames')] # NTCHW else: videos = [fill_with_black_squares(v, num_frames) for v in videos_th] # NTCHW frame_grids = torch.stack(videos).permute(1, 0, 2, 3, 4) # [T, N, C, H, W] if nrow is None: nrow = int(np.ceil(np.sqrt(n))) if verbose: frame_grids = [make_grid(fs, nrow=nrow) for fs in tqdm(frame_grids, desc='Making grids')] else: frame_grids = [make_grid(fs, nrow=nrow) for fs in frame_grids] if os.path.dirname(out_path) != "": os.makedirs(os.path.dirname(out_path), exist_ok=True) frame_grids = ((torch.stack(frame_grids) + 1) / 2 * 255).to(torch.uint8).permute(0, 2, 3, 1) # [T, H, W, C] torchvision.io.write_video(out_path, frame_grids, fps=fps, video_codec='h264', options={'crf': '10'})