edaiofficial
commited on
Commit
·
b13cebd
1
Parent(s):
6c20b5b
Upload mmtafrica.py
Browse files- mmtafrica.py +961 -0
mmtafrica.py
ADDED
@@ -0,0 +1,961 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from locale import strcoll
|
2 |
+
from datasets import load_dataset
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from torch import optim
|
6 |
+
from torch.nn import functional as F
|
7 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
8 |
+
from transformers.optimization import Adafactor
|
9 |
+
from transformers import get_linear_schedule_with_warmup
|
10 |
+
from tqdm.notebook import tqdm
|
11 |
+
import random
|
12 |
+
import sacrebleu
|
13 |
+
import os
|
14 |
+
import pandas as pd
|
15 |
+
from sklearn.model_selection import train_test_split
|
16 |
+
import torch.multiprocessing as mp
|
17 |
+
from torch.multiprocessing import Process, Queue
|
18 |
+
from joblib import Parallel, delayed,parallel_backend
|
19 |
+
import sys
|
20 |
+
from functools import partial
|
21 |
+
import json
|
22 |
+
import time
|
23 |
+
import numpy as np
|
24 |
+
from datetime import datetime
|
25 |
+
|
26 |
+
|
27 |
+
class Config():
|
28 |
+
def __init__(self,args) -> None:
|
29 |
+
|
30 |
+
self.homepath = args.homepath
|
31 |
+
self.prediction_path = os.path.join(args.homepath,args.prediction_path)
|
32 |
+
# Use 'google/mt5-small' for non-pro cloab users
|
33 |
+
self.model_repo = 'google/mt5-base'
|
34 |
+
self.model_path_dir = args.homepath
|
35 |
+
self.model_name = f'{args.model_name}.pt'
|
36 |
+
self.bt_data_dir = os.path.join(args.homepath,args.bt_data_dir)
|
37 |
+
|
38 |
+
#Data part
|
39 |
+
self.parallel_dir= os.path.join(args.homepath,args.parallel_dir)
|
40 |
+
self.mono_dir= os.path.join(args.homepath,args.mono_dir)
|
41 |
+
|
42 |
+
self.log = os.path.join(args.homepath,args.log)
|
43 |
+
self.mono_data_limit = args.mono_data_limit
|
44 |
+
self.mono_data_for_noise_limit=args.mono_data_for_noise_limit
|
45 |
+
#Training params
|
46 |
+
self.n_epochs = args.n_epochs
|
47 |
+
self.n_bt_epochs=args.n_bt_epochs
|
48 |
+
|
49 |
+
self.batch_size = args.batch_size
|
50 |
+
self.max_seq_len = args.max_seq_len
|
51 |
+
self.min_seq_len = args.min_seq_len
|
52 |
+
self.checkpoint_freq = args.checkpoint_freq
|
53 |
+
self.lr = 1e-4
|
54 |
+
self.print_freq = args.print_freq
|
55 |
+
self.use_multiprocessing = args.use_multiprocessing
|
56 |
+
|
57 |
+
self.num_cores = mp.cpu_count()
|
58 |
+
self.NUM_PRETRAIN = args.num_pretrain_steps
|
59 |
+
self.NUM_BACKTRANSLATION_TIMES =args.num_backtranslation_steps
|
60 |
+
self.do_backtranslation=args.do_backtranslation
|
61 |
+
self.now_on_bt=False
|
62 |
+
self.bt_time=0
|
63 |
+
self.using_reconstruction= args.use_reconstruction
|
64 |
+
self.num_return_sequences_bt=2
|
65 |
+
self.use_torch_data_parallel = args.use_torch_data_parallel
|
66 |
+
|
67 |
+
self.gradient_accumulation_batch = args.gradient_accumulation_batch
|
68 |
+
self.num_beams = args.num_beams
|
69 |
+
|
70 |
+
self.best_loss = 1000
|
71 |
+
self.best_loss_delta = 0.00000001
|
72 |
+
self.patience=args.patience
|
73 |
+
self.L2=0.0000001
|
74 |
+
self.dropout=args.dropout
|
75 |
+
|
76 |
+
self.drop_prob=args.drop_probability
|
77 |
+
self.num_swaps=args.num_swaps
|
78 |
+
|
79 |
+
self.verbose=args.verbose
|
80 |
+
|
81 |
+
self.now_on_test=False
|
82 |
+
|
83 |
+
#Initialization of state dict which will be saved during training
|
84 |
+
self.state_dict = {'batch_idx': 0,'epoch':0,'bt_time':self.bt_time,'best_loss':self.best_loss}
|
85 |
+
self.state_dict_check = {'batch_idx': 0,'epoch':0,'bt_time':self.bt_time,'best_loss':self.best_loss} #this is for tracing training after abrupt end!
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
self.device = torch.device('cuda' if True and torch.cuda.is_available() else 'cpu')
|
90 |
+
|
91 |
+
#We will be leveraging parallel and monolingual data for each of these languages.
|
92 |
+
#parallel data will be saved in a central 'parallel_data 'folder as 'src'_'tg'_parallel.tsv
|
93 |
+
#monolingual data will be saved in another folder called 'monolingual_data' as 'lg'_mono.tsv
|
94 |
+
|
95 |
+
#Each tsv file is of the form "input", "output"
|
96 |
+
self.LANG_TOKEN_MAPPING = {
|
97 |
+
'ig': '<ig>',
|
98 |
+
'fon': '<fon>',
|
99 |
+
'en': '<en>',
|
100 |
+
'fr': '<fr>',
|
101 |
+
'rw':'<rw>',
|
102 |
+
'yo':'<yo>',
|
103 |
+
'xh':'<xh>',
|
104 |
+
'sw':'<sw>'
|
105 |
+
}
|
106 |
+
|
107 |
+
|
108 |
+
self.truncation=True
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
def beautify_time(time):
|
114 |
+
hr = time//(3600)
|
115 |
+
mins = (time-(hr*3600))//60
|
116 |
+
rest = time -(hr*3600) - (mins*60)
|
117 |
+
#DARIA's implementation!
|
118 |
+
sp = ""
|
119 |
+
if hr >=1:
|
120 |
+
sp += '{} hours'.format(hr)
|
121 |
+
if mins >=1:
|
122 |
+
sp += ' {} mins'.format(mins)
|
123 |
+
if rest >=1:
|
124 |
+
sp += ' {} seconds'.format(rest)
|
125 |
+
return sp
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
def word_delete(x,config):
|
130 |
+
noise=[]
|
131 |
+
words = x.split(' ')
|
132 |
+
if len(words) == 1:
|
133 |
+
return x
|
134 |
+
for w in words:
|
135 |
+
a= np.random.choice([0,1], 1, p=[config.drop_prob, 1-config.drop_prob])
|
136 |
+
if a[0]==1: #It means don't delete
|
137 |
+
noise.append(w)
|
138 |
+
#if you end up deleting all words, just return a random word
|
139 |
+
if len(noise) == 0:
|
140 |
+
rand_int = random.randint(0, len(words)-1)
|
141 |
+
return [words[rand_int]]
|
142 |
+
|
143 |
+
return ' '.join(noise)
|
144 |
+
|
145 |
+
def swap_word(new_words):
|
146 |
+
|
147 |
+
random_idx_1 = random.randint(0, len(new_words)-1)
|
148 |
+
random_idx_2 = random_idx_1
|
149 |
+
counter = 0
|
150 |
+
|
151 |
+
while random_idx_2 == random_idx_1:
|
152 |
+
random_idx_2 = random.randint(0, len(new_words)-1)
|
153 |
+
counter += 1
|
154 |
+
|
155 |
+
if counter > 3:
|
156 |
+
return new_words
|
157 |
+
|
158 |
+
new_words[random_idx_1], new_words[random_idx_2] = new_words[random_idx_2], new_words[random_idx_1]
|
159 |
+
return new_words
|
160 |
+
|
161 |
+
def random_swap(words, n):
|
162 |
+
|
163 |
+
words = words.split()
|
164 |
+
new_words = words.copy()
|
165 |
+
|
166 |
+
for _ in range(n):
|
167 |
+
new_words = swap_word(new_words)
|
168 |
+
|
169 |
+
sentence = ' '.join(new_words)
|
170 |
+
|
171 |
+
return sentence
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
def get_dict(input,target,src,tgt):
|
176 |
+
inp = [i for i in input]
|
177 |
+
target_ = [ i for i in target]
|
178 |
+
s= [src for i in range(len(inp))]
|
179 |
+
t = [tgt for i in range(len(target_))]
|
180 |
+
return [{'inputs':inp_,'targets':target__,'src':s_,'tgt':t_} for inp_,target__,s_,t_ in zip(inp,target_,s,t)]
|
181 |
+
|
182 |
+
def get_dict_mono(input,src,config):
|
183 |
+
index = [i for i in range(len(input))]
|
184 |
+
ids = random.sample(index,config.mono_data_limit)
|
185 |
+
inp = [input[i] for i in ids]
|
186 |
+
s= [src for i in range(len(inp))]
|
187 |
+
data=[]
|
188 |
+
for lang in config.LANG_TOKEN_MAPPING.keys():
|
189 |
+
if lang!=src and lang not in ['en','fr']:
|
190 |
+
data.extend([{'inputs':inp_,'src':s_,'tgt':lang} for inp_,s_ in zip(inp,s)])
|
191 |
+
return data
|
192 |
+
|
193 |
+
def get_dict_mono_noise(input,src,config):
|
194 |
+
index = [i for i in range(len(input))]
|
195 |
+
ids = random.sample(index,config.mono_data_for_noise_limit)
|
196 |
+
inp = [input[i] for i in ids]
|
197 |
+
noised = [word_delete(random_swap(str(x),config.num_swaps),config) for x in inp]
|
198 |
+
s= [src for i in range(len(inp))]
|
199 |
+
data=[]
|
200 |
+
data.extend([{'inputs':noise_,'targets':inp_,'src':s_,'tgt':s_} for inp_,s_,noise_ in zip(inp,s,noised)])
|
201 |
+
return data
|
202 |
+
|
203 |
+
|
204 |
+
def compress(input,target,src,tgt):
|
205 |
+
return {'inputs':input,'targets':target,'src':src,'tgt':tgt}
|
206 |
+
|
207 |
+
|
208 |
+
def make_dataset(config,mode):
|
209 |
+
if mode!='eval' and mode!='train' and mode!='test':
|
210 |
+
raise Exception('mode is either train or eval or test!')
|
211 |
+
else:
|
212 |
+
|
213 |
+
files = [f.name for f in os.scandir(config.parallel_dir) ]
|
214 |
+
files = [f for f in files if f.split('.')[-1]=='tsv' and f.split('.tsv')[0].endswith(mode) and len(f.split('_'))>2 ]
|
215 |
+
data = [(f_.split('_')[0],f_.split('_')[1],pd.read_csv(os.path.join(config.parallel_dir,f_), sep="\t")) for f_ in files]
|
216 |
+
dict_ = [get_dict(df['input'],df['target'],src,tgt) for src,tgt,df in data]
|
217 |
+
return [item for sublist in dict_ for item in sublist]
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
def get_model_translation(config,model,tokenizer,sentence,tgt):
|
222 |
+
if config.use_torch_data_parallel:
|
223 |
+
max_seq_len_ = model.module.config.max_length
|
224 |
+
else:
|
225 |
+
max_seq_len_ = model.config.max_length
|
226 |
+
input_ids = encode_input_str(config,text = sentence,target_lang = tgt,tokenizer = tokenizer,seq_len = max_seq_len_).unsqueeze(0).to(config.device)
|
227 |
+
if config.use_torch_data_parallel:
|
228 |
+
out = model.module.generate(input_ids,num_beams=3,do_sample=True, num_return_sequences=config.num_return_sequences_bt,max_length=config.max_seq_len,min_length=config.min_seq_len)
|
229 |
+
else:
|
230 |
+
out = model.generate(input_ids,num_beams=3, do_sample=True,num_return_sequences=config.num_return_sequences_bt,max_length=config.max_seq_len,min_length=config.min_seq_len)
|
231 |
+
|
232 |
+
out_id = [i for i in range(config.num_return_sequences_bt)]
|
233 |
+
id_ = random.sample(out_id,1)
|
234 |
+
|
235 |
+
return tokenizer.decode(out[id_][0], skip_special_tokens=True)
|
236 |
+
|
237 |
+
|
238 |
+
def do_job(t,id_,tokenizers):
|
239 |
+
tokenizer = tokenizers[id_ % len(tokenizers)]
|
240 |
+
#We flip the input as target and vice versa in order to have target-side backtranslation (where source side is synthetic).
|
241 |
+
return {'inputs':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'targets':t['inputs'],'src':t['tgt'],'tgt':t['src']}
|
242 |
+
#return {'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']}
|
243 |
+
|
244 |
+
|
245 |
+
def do_job_pmap(t):
|
246 |
+
#tokenizer = tokenizers[id_ % len(tokenizers)]
|
247 |
+
return {'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']}
|
248 |
+
|
249 |
+
def do_job_pool(bt_data,model,id_,tokenizers,config,mono_data):
|
250 |
+
tokenizer = tokenizers[id_]
|
251 |
+
if config.verbose:
|
252 |
+
print(f"Mono data inside job pool: {mono_data}")
|
253 |
+
sys.stdout.flush()
|
254 |
+
res = [{'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']} for t in mono_data]
|
255 |
+
bt_data.put(res)
|
256 |
+
return None
|
257 |
+
|
258 |
+
def mono_data_(config):
|
259 |
+
#Find and prepare all the mono data in the directory
|
260 |
+
files_ = [f.name for f in os.scandir(config.mono_dir) ]
|
261 |
+
files = [f for f in files_ if f.endswith('tsv') and f.split('.tsv')[0].endswith('mono')]
|
262 |
+
if config.verbose:
|
263 |
+
print("Generating data for back translation")
|
264 |
+
print(f"Files found in mono dir: {files}")
|
265 |
+
data = [(f_.split('_')[0],pd.read_csv(os.path.join(config.mono_dir,f_), sep="\t")) for f_ in files]
|
266 |
+
dict_ = [get_dict_mono(df['input'],src,config) for src,df in data]
|
267 |
+
mono_data = [item for sublist in dict_ for item in sublist]
|
268 |
+
return mono_data
|
269 |
+
|
270 |
+
def mono_data_noise(config):
|
271 |
+
#Find and prepare all the mono data in the directory
|
272 |
+
files_ = [f.name for f in os.scandir(config.mono_dir) ]
|
273 |
+
files = [f for f in files_ if f.endswith('tsv') and f.split('.tsv')[0].endswith('mono')]
|
274 |
+
if config.verbose:
|
275 |
+
print("Generating data for back translation")
|
276 |
+
print(f"Files found in mono dir: {files}")
|
277 |
+
data = [(f_.split('_')[0],pd.read_csv(os.path.join(config.mono_dir,f_), sep="\t")) for f_ in files]
|
278 |
+
dict_ = [get_dict_mono_noise(df['input'],src,config) for src,df in data]
|
279 |
+
mono_data = [item for sublist in dict_ for item in sublist]
|
280 |
+
return mono_data
|
281 |
+
|
282 |
+
|
283 |
+
|
284 |
+
def get_mono_data(config,model):
|
285 |
+
mono_data = mono_data_(config)
|
286 |
+
|
287 |
+
if config.use_multiprocessing:
|
288 |
+
if config.verbose:
|
289 |
+
print(f"Using multiprocessing on {config.num_cores} processes")
|
290 |
+
if __name__ == "__main__":
|
291 |
+
ctx = mp.get_context('spawn')
|
292 |
+
#mp.set_start_method("spawn",force=True)
|
293 |
+
bt_data = ctx.Queue()
|
294 |
+
model.share_memory()
|
295 |
+
num_processes = config.num_cores
|
296 |
+
NUM_TO_USE = len(mono_data)//num_processes
|
297 |
+
mini_mono_data = [mono_data[i:i + NUM_TO_USE] for i in range(0, len(mono_data), NUM_TO_USE)]
|
298 |
+
#print(f"Length of mini mono data {len(mini_mono_data)}. Length of processes: {num_processes}")
|
299 |
+
assert len(mini_mono_data) == num_processes, "Length of mini mono data and number of processes do not match."
|
300 |
+
|
301 |
+
num_processes_range = [i for i in range(num_processes)]
|
302 |
+
processes = []
|
303 |
+
for rank,data_ in tqdm(zip(num_processes_range,mini_mono_data)):
|
304 |
+
p = ctx.Process(target=do_job_pool, args=(bt_data,model,rank,tokenizers_for_parallel,config,data_))
|
305 |
+
p.start()
|
306 |
+
if config.verbose:
|
307 |
+
print(f"Bt data: {bt_data.get()}")
|
308 |
+
sys.stdout.flush()
|
309 |
+
processes.append(p)
|
310 |
+
|
311 |
+
for p in processes:
|
312 |
+
p.join()
|
313 |
+
|
314 |
+
return bt_data
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
#output = multiprocessing.Queue()
|
319 |
+
#multiprocessing.set_start_method("spawn",force=True)
|
320 |
+
#pool = mp.Pool(processes=config.num_cores)
|
321 |
+
#bt_data = [pool.apply(do_job, args=(data_,i,tokenizers_for_parallel,)) for i,data_ in enumerate(mono_data)]
|
322 |
+
|
323 |
+
'''
|
324 |
+
# Setup a list of processes that we want to run
|
325 |
+
processes = [mp.Process(target=do_job, args=(5, output)) for x in range(config.num_cores)]
|
326 |
+
if __name__ == "__main__":
|
327 |
+
#pool = mp.Pool(processes=config.num_cores)
|
328 |
+
with parallel_backend('loky'):
|
329 |
+
bt_data = Parallel(n_jobs = config.num_cores, require='sharedmem')(delayed(do_job)(data_,i,tokenizers_for_parallel) for i,data_ in enumerate(mono_data))
|
330 |
+
'''
|
331 |
+
else:
|
332 |
+
bt_data = [{'inputs':t['inputs'],'targets':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'src':t['src'],'tgt':t['tgt']} for t in tqdm(mono_data)]
|
333 |
+
return bt_data
|
334 |
+
|
335 |
+
|
336 |
+
|
337 |
+
def encode_input_str(config,text, target_lang, tokenizer, seq_len):
|
338 |
+
|
339 |
+
target_lang_token = config.LANG_TOKEN_MAPPING[target_lang]
|
340 |
+
|
341 |
+
# Tokenize and add special tokens
|
342 |
+
input_ids = tokenizer.encode(
|
343 |
+
text = str(target_lang_token) + str(text),
|
344 |
+
return_tensors = 'pt',
|
345 |
+
padding = 'max_length',
|
346 |
+
truncation = config.truncation,
|
347 |
+
max_length = seq_len)
|
348 |
+
|
349 |
+
return input_ids[0]
|
350 |
+
|
351 |
+
def encode_target_str(config,text, tokenizer, seq_len):
|
352 |
+
token_ids = tokenizer.encode(
|
353 |
+
text = str(text),
|
354 |
+
return_tensors = 'pt',
|
355 |
+
padding = 'max_length',
|
356 |
+
truncation = config.truncation,
|
357 |
+
max_length = seq_len)
|
358 |
+
|
359 |
+
return token_ids[0]
|
360 |
+
|
361 |
+
def format_translation_data(config,sample,tokenizer,seq_len):
|
362 |
+
|
363 |
+
# sample is of the form {'inputs':input,'targets':target,'src':src,'tgt':tgt}
|
364 |
+
|
365 |
+
# Get the translations for the batch
|
366 |
+
|
367 |
+
input_lang = sample['src']
|
368 |
+
target_lang = sample['tgt']
|
369 |
+
|
370 |
+
|
371 |
+
input_text = sample['inputs']
|
372 |
+
target_text = sample['targets']
|
373 |
+
|
374 |
+
if input_text is None or target_text is None:
|
375 |
+
return None
|
376 |
+
|
377 |
+
input_token_ids = encode_input_str(config,input_text, target_lang, tokenizer, seq_len)
|
378 |
+
|
379 |
+
target_token_ids = encode_target_str(config,target_text, tokenizer, seq_len)
|
380 |
+
|
381 |
+
return input_token_ids, target_token_ids
|
382 |
+
|
383 |
+
def transform_batch(config,batch,tokenizer,max_seq_len):
|
384 |
+
inputs = []
|
385 |
+
targets = []
|
386 |
+
for sample in batch:
|
387 |
+
formatted_data = format_translation_data(config,sample,tokenizer,max_seq_len)
|
388 |
+
|
389 |
+
if formatted_data is None:
|
390 |
+
continue
|
391 |
+
|
392 |
+
input_ids, target_ids = formatted_data
|
393 |
+
inputs.append(input_ids.unsqueeze(0))
|
394 |
+
targets.append(target_ids.unsqueeze(0))
|
395 |
+
|
396 |
+
batch_input_ids = torch.cat(inputs)
|
397 |
+
batch_target_ids = torch.cat(targets)
|
398 |
+
|
399 |
+
return batch_input_ids, batch_target_ids
|
400 |
+
|
401 |
+
def get_data_generator(config,dataset,tokenizer,max_seq_len,batch_size):
|
402 |
+
random.shuffle(dataset)
|
403 |
+
|
404 |
+
for i in range(0, len(dataset), batch_size):
|
405 |
+
raw_batch = dataset[i:i+batch_size]
|
406 |
+
yield transform_batch(config,raw_batch, tokenizer,max_seq_len)
|
407 |
+
|
408 |
+
def eval_model(config,tokenizer,model, gdataset, max_iters=8):
|
409 |
+
test_generator = get_data_generator(config,gdataset,tokenizer,config.max_seq_len, config.batch_size)
|
410 |
+
eval_losses = []
|
411 |
+
for i, (input_batch, label_batch) in enumerate(test_generator):
|
412 |
+
|
413 |
+
input_batch, label_batch = input_batch.to(config.device), label_batch.to(config.device)
|
414 |
+
model_out = model.forward(
|
415 |
+
input_ids = input_batch,
|
416 |
+
labels = label_batch)
|
417 |
+
|
418 |
+
if config.use_torch_data_parallel:
|
419 |
+
loss = torch.mean(model_out.loss)
|
420 |
+
else:
|
421 |
+
loss = model_out.loss
|
422 |
+
|
423 |
+
eval_losses.append(loss.item())
|
424 |
+
|
425 |
+
return np.mean(eval_losses)
|
426 |
+
|
427 |
+
|
428 |
+
|
429 |
+
def evaluate(config,tokenizer,model,test_dataset,src_lang=None,tgt_lang=None):
|
430 |
+
if src_lang!=None and tgt_lang!=None:
|
431 |
+
if config.verbose:
|
432 |
+
with open(config.log,'a+') as fl:
|
433 |
+
print(f"Getting evaluation set for source language -> {src_lang} and target language -> {tgt_lang}",file=fl)
|
434 |
+
data = [t for t in test_dataset if t['src']==src_lang and t['tgt']==tgt_lang]
|
435 |
+
|
436 |
+
else:
|
437 |
+
data= [t for t in test_dataset]
|
438 |
+
|
439 |
+
inp = [t['inputs'] for t in data]
|
440 |
+
truth = [t['targets'] for t in data]
|
441 |
+
tgt_lang_ = [t['tgt'] for t in data]
|
442 |
+
|
443 |
+
seq_len__ = config.max_seq_len
|
444 |
+
|
445 |
+
input_tokens = [encode_input_str(config,text = inp[i],target_lang = tgt_lang_[i],tokenizer = tokenizer,seq_len =seq_len__).unsqueeze(0).to(config.device) for i in range(len(inp))]
|
446 |
+
|
447 |
+
if config.use_torch_data_parallel:
|
448 |
+
output = [model.module.generate(input_ids, num_beams=config.num_beams, num_return_sequences=1,max_length=config.max_seq_len,min_length=config.min_seq_len) for input_ids in tqdm(input_tokens)]
|
449 |
+
else:
|
450 |
+
output = [model.generate(input_ids, num_beams=config.num_beams, num_return_sequences=1,max_length=config.max_seq_len,min_length=config.min_seq_len) for input_ids in tqdm(input_tokens)]
|
451 |
+
output = [tokenizer.decode(out[0], skip_special_tokens=True) for out in tqdm(output)]
|
452 |
+
|
453 |
+
df= pd.DataFrame({'predictions':output,'truth':truth,'inputs':inp})
|
454 |
+
if config.now_on_bt and config.using_reconstruction:
|
455 |
+
filename = f'{src_lang}_{tgt_lang}_bt_{config.bt_time}_rec.tsv'
|
456 |
+
elif config.now_on_bt:
|
457 |
+
filename = f'{src_lang}_{tgt_lang}_bt_{config.bt_time}.tsv'
|
458 |
+
elif config.now_on_test:
|
459 |
+
filename = f'{src_lang}_{tgt_lang}_TEST.tsv'
|
460 |
+
else:
|
461 |
+
filename = f'{src_lang}_{tgt_lang}.tsv'
|
462 |
+
df.to_csv(os.path.join(config.prediction_path,filename),sep='\t',index=False)
|
463 |
+
try:
|
464 |
+
spbleu = sacrebleu.corpus_bleu(output, [truth])
|
465 |
+
except Exception:
|
466 |
+
raise Exception(f'There is a problem with {src_lang}_{tgt_lang}. Truth is {truth} \n Input is {inp} ')
|
467 |
+
|
468 |
+
|
469 |
+
|
470 |
+
return spbleu.score
|
471 |
+
|
472 |
+
|
473 |
+
def do_evaluation(config,tokenizer,model,test_dataset):
|
474 |
+
LANGS = list(config.LANG_TOKEN_MAPPING.keys())
|
475 |
+
if config.now_on_bt and config.using_reconstruction:
|
476 |
+
s=f'---------------------------AFTER BACKTRANSLATION {config.bt_time} with RECONSTRUCTION---------------------------'+'\n'
|
477 |
+
elif config.now_on_bt:
|
478 |
+
s=f'---------------------------AFTER BACKTRANSLATION {config.bt_time}---------------------------'+'\n'
|
479 |
+
elif config.now_on_test:
|
480 |
+
s=f'---------------------------TESTING EVALUATION---------------------------'+'\n'
|
481 |
+
else:
|
482 |
+
s=f'---------------------------EVALUATION ON DEV---------------------------'+'\n'
|
483 |
+
for i in range(len(LANGS)):
|
484 |
+
for j in range(len(LANGS)):
|
485 |
+
if LANGS[j]!=LANGS[i]:
|
486 |
+
eval_bleu = evaluate(config,tokenizer,model,test_dataset,src_lang=LANGS[i],tgt_lang=LANGS[j])
|
487 |
+
a = f'Bleu Score for {LANGS[i]} to {LANGS[j]} -> {eval_bleu} '+'\n'
|
488 |
+
s+=a
|
489 |
+
|
490 |
+
|
491 |
+
s+='------------------------------------------------------'
|
492 |
+
with open(os.path.join(config.homepath,'bleu_log.txt'), 'a+') as fl:
|
493 |
+
print(s,file=fl)
|
494 |
+
|
495 |
+
|
496 |
+
def train(config,n_epochs,optimizer,tokenizer,train_dataset,dev_dataset,n_batches,model,save_with_bt=False):
|
497 |
+
patience=0
|
498 |
+
losses = []
|
499 |
+
for epoch_idx in range(n_epochs):
|
500 |
+
if epoch_idx>=config.state_dict_check['epoch']+1:
|
501 |
+
st_time = time.time()
|
502 |
+
avg_loss=0
|
503 |
+
# Randomize data order
|
504 |
+
data_generator = get_data_generator(config,train_dataset,tokenizer,config.max_seq_len, config.batch_size)
|
505 |
+
optimizer.zero_grad()
|
506 |
+
for batch_idx, (input_batch, label_batch) in tqdm(enumerate(data_generator), total=n_batches):
|
507 |
+
if batch_idx >= config.state_dict_check['batch_idx']:
|
508 |
+
|
509 |
+
input_batch,label_batch = input_batch.to(config.device),label_batch.to(config.device)
|
510 |
+
# Forward pass
|
511 |
+
model_out = model.forward(input_ids = input_batch, labels = label_batch)
|
512 |
+
|
513 |
+
# Calculate loss and update weights
|
514 |
+
if config.use_torch_data_parallel:
|
515 |
+
loss = torch.mean(model_out.loss)
|
516 |
+
else:
|
517 |
+
loss = model_out.loss
|
518 |
+
|
519 |
+
losses.append(loss.item())
|
520 |
+
loss.backward()
|
521 |
+
|
522 |
+
#Gradient accumulation
|
523 |
+
if (batch_idx+1) % config.gradient_accumulation_batch == 0:
|
524 |
+
optimizer.step()
|
525 |
+
optimizer.zero_grad()
|
526 |
+
# Print training update info
|
527 |
+
if (batch_idx + 1) % config.print_freq == 0:
|
528 |
+
avg_loss = np.mean(losses)
|
529 |
+
losses=[]
|
530 |
+
if config.verbose:
|
531 |
+
with open(config.log,'a+') as fl:
|
532 |
+
print('Epoch: {} | Step: {} | Avg. loss: {:.3f}'.format(epoch_idx+1, batch_idx+1, avg_loss),file=fl)
|
533 |
+
|
534 |
+
if (batch_idx + 1) % config.checkpoint_freq == 0:
|
535 |
+
test_loss = eval_model(config,tokenizer,model, dev_dataset)
|
536 |
+
if config.best_loss-test_loss > config.best_loss_delta:
|
537 |
+
config.best_loss = test_loss
|
538 |
+
patience=0
|
539 |
+
if config.verbose:
|
540 |
+
with open(config.log,'a+') as fl:
|
541 |
+
print('Saving model with best test loss of {:.3f}'.format(test_loss),file=fl)
|
542 |
+
|
543 |
+
if save_with_bt:
|
544 |
+
model_name = config.model_name.split('.')[0]+'_bt.pt'
|
545 |
+
else:
|
546 |
+
model_name = config.model_name
|
547 |
+
|
548 |
+
config.state_dict.update({'batch_idx': batch_idx,'epoch':epoch_idx,'bt_time':config.bt_time-1,'best_loss':config.best_loss})
|
549 |
+
if config.use_torch_data_parallel:
|
550 |
+
config.state_dict['model_state_dict']=model.module.state_dict()
|
551 |
+
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
|
552 |
+
else:
|
553 |
+
config.state_dict['model_state_dict']=model.state_dict()
|
554 |
+
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
|
555 |
+
else:
|
556 |
+
if config.verbose:
|
557 |
+
with open(config.log,'a+') as fl:
|
558 |
+
print(f'No improvement in loss {test_loss} over best loss {config.best_loss}. Not saving model checkpoint',file=fl)
|
559 |
+
patience+=1
|
560 |
+
if patience >= config.patience:
|
561 |
+
with open(config.log,'a+') as fl:
|
562 |
+
print("Stopping model training due to early stopping",file=fl)
|
563 |
+
break
|
564 |
+
with open(config.log,'a+') as fl:
|
565 |
+
print('Epoch: {} | Step: {} | Avg. loss: {:.3f} | Time taken: {} | Time: {}'.format(epoch_idx+1, batch_idx+1, avg_loss, beautify_time(time.time()-st_time),datetime.now()),file=fl)
|
566 |
+
|
567 |
+
# Do this after epochs to get status of model at end of training----
|
568 |
+
test_loss = eval_model(config,tokenizer,model, dev_dataset)
|
569 |
+
if config.best_loss-test_loss > config.best_loss_delta:
|
570 |
+
config.best_loss = test_loss
|
571 |
+
patience=0
|
572 |
+
if config.verbose:
|
573 |
+
with open(config.log,'a+') as fl:
|
574 |
+
print('Saving model with best test loss of {:.3f}'.format(test_loss),file=fl)
|
575 |
+
|
576 |
+
if save_with_bt:
|
577 |
+
model_name = config.model_name.split('.')[0]+'_bt.pt'
|
578 |
+
else:
|
579 |
+
model_name = config.model_name
|
580 |
+
|
581 |
+
config.state_dict.update({'batch_idx': n_batches-1,'epoch':n_epochs-1,'bt_time':config.bt_time-1,'best_loss':config.best_loss})
|
582 |
+
if config.use_torch_data_parallel:
|
583 |
+
config.state_dict['model_state_dict']=model.module.state_dict()
|
584 |
+
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
|
585 |
+
else:
|
586 |
+
config.state_dict['model_state_dict']=model.state_dict()
|
587 |
+
torch.save(config.state_dict, os.path.join(config.model_path_dir,model_name))
|
588 |
+
else:
|
589 |
+
if config.verbose:
|
590 |
+
with open(config.log,'a+') as fl:
|
591 |
+
print(f'No improvement in loss {test_loss} over best loss {config.best_loss}. Not saving model checkpoint',file=fl)
|
592 |
+
patience+=1
|
593 |
+
#---------------------------------------------
|
594 |
+
|
595 |
+
|
596 |
+
|
597 |
+
def main(args):
|
598 |
+
if not os.path.exists(args.homepath):
|
599 |
+
raise Exception(f'HOMEPATH {args.homepath} does not exist!')
|
600 |
+
config = Config(args)
|
601 |
+
if not os.path.exists(config.prediction_path):
|
602 |
+
os.makedirs(config.prediction_path)
|
603 |
+
if not os.path.exists(config.bt_data_dir):
|
604 |
+
os.makedirs(config.bt_data_dir)
|
605 |
+
"""# Load Tokenizer & Model"""
|
606 |
+
|
607 |
+
tokenizer = AutoTokenizer.from_pretrained(config.model_repo)
|
608 |
+
if config.use_multiprocessing:
|
609 |
+
tokenizers_for_parallel = [AutoTokenizer.from_pretrained(config.model_repo) for i in range(config.num_cores)]
|
610 |
+
|
611 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(config.model_repo)
|
612 |
+
|
613 |
+
if not os.path.exists(config.parallel_dir):
|
614 |
+
raise Exception(f'Directory `{config.parallel_dir}` cannot be empty! It must contain the parallel files')
|
615 |
+
|
616 |
+
train_dataset = make_dataset(config,'train')
|
617 |
+
with open(config.log,'a+') as fl:
|
618 |
+
print(f"Length of train dataset: {len(train_dataset)}",file=fl)
|
619 |
+
|
620 |
+
dev_dataset = make_dataset(config,'eval')
|
621 |
+
with open(config.log,'a+') as fl:
|
622 |
+
print(f"Length of dev dataset: {len(dev_dataset)}",file=fl)
|
623 |
+
|
624 |
+
"""## Update tokenizer"""
|
625 |
+
special_tokens_dict = {'additional_special_tokens': list(config.LANG_TOKEN_MAPPING.values())}
|
626 |
+
tokenizer.add_special_tokens(special_tokens_dict)
|
627 |
+
if config.use_multiprocessing:
|
628 |
+
for tk in tokenizers_for_parallel:
|
629 |
+
tk.add_special_tokens(special_tokens_dict)
|
630 |
+
model.resize_token_embeddings(len(tokenizer))
|
631 |
+
|
632 |
+
|
633 |
+
"""# Train/Finetune MT5"""
|
634 |
+
if os.path.exists(os.path.join(config.model_path_dir,config.model_name)):
|
635 |
+
if config.verbose:
|
636 |
+
with open(config.log,'a+') as fl:
|
637 |
+
print("-----------Using model checkpoint-----------",file=fl)
|
638 |
+
|
639 |
+
try:
|
640 |
+
state_dict = torch.load(os.path.join(config.model_path_dir,config.model_name.split('.')[0]+'_bt.pt'))
|
641 |
+
except Exception:
|
642 |
+
with open(config.log,'a+') as fl:
|
643 |
+
print('No mmt_translation_bt.pt present. Default to original mmt_translation.pt',file=fl)
|
644 |
+
state_dict = torch.load(os.path.join(config.model_path_dir,config.model_name))
|
645 |
+
|
646 |
+
|
647 |
+
# Note to self: Make this beter.
|
648 |
+
config.state_dict_check['epoch']=state_dict['epoch']
|
649 |
+
config.state_dict_check['bt_time']=state_dict['bt_time']
|
650 |
+
config.state_dict_check['best_loss']=state_dict['best_loss']
|
651 |
+
config.best_loss = config.state_dict_check['best_loss']
|
652 |
+
config.state_dict_check['batch_idx']=state_dict['batch_idx']
|
653 |
+
model.load_state_dict(state_dict['model_state_dict'])
|
654 |
+
|
655 |
+
#Temp change
|
656 |
+
config.state_dict_check['epoch']=-1
|
657 |
+
config.state_dict_check['batch_idx']=0
|
658 |
+
config.state_dict_check['bt_time']=-1
|
659 |
+
|
660 |
+
|
661 |
+
#Using DataParallel
|
662 |
+
if config.use_torch_data_parallel:
|
663 |
+
model = torch.nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
|
664 |
+
model = model.to(config.device)
|
665 |
+
#-----
|
666 |
+
|
667 |
+
# Optimizer
|
668 |
+
optimizer = Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=config.lr)
|
669 |
+
|
670 |
+
#Normal training
|
671 |
+
n_batches = int(np.ceil(len(train_dataset) / config.batch_size))
|
672 |
+
total_steps = config.n_epochs * n_batches
|
673 |
+
n_warmup_steps = int(total_steps * 0.01)
|
674 |
+
|
675 |
+
#scheduler = get_linear_schedule_with_warmup(optimizer, n_warmup_steps, total_steps)
|
676 |
+
#scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=config.lr, max_lr=0.001,cycle_momentum=False)
|
677 |
+
|
678 |
+
train(config,config.n_epochs,optimizer,tokenizer,train_dataset,dev_dataset,n_batches,model)
|
679 |
+
if config.verbose:
|
680 |
+
with open(config.log,'a+') as fl:
|
681 |
+
print('Evaluaton...',file=fl)
|
682 |
+
do_evaluation(config,tokenizer,model,dev_dataset)
|
683 |
+
config.state_dict_check['epoch']=-1
|
684 |
+
config.state_dict_check['batch_idx']=0
|
685 |
+
|
686 |
+
if config.do_backtranslation:
|
687 |
+
#Backtranslation time
|
688 |
+
config.now_on_bt=True
|
689 |
+
with open(config.log,'a+') as fl:
|
690 |
+
print('---------------Start of Backtranslation---------------',file=fl)
|
691 |
+
for n_bt in range(config.NUM_BACKTRANSLATION_TIMES):
|
692 |
+
if n_bt>=config.state_dict_check['bt_time']+1:
|
693 |
+
with open(config.log,'a+') as fl:
|
694 |
+
print(f"Backtranslation {n_bt+1} of {config.NUM_BACKTRANSLATION_TIMES}--------------",file=fl)
|
695 |
+
config.bt_time = n_bt+1
|
696 |
+
save_bt_file_path = os.path.join(config.bt_data_dir,'bt'+str(n_bt+1)+'.json')
|
697 |
+
if not os.path.exists(save_bt_file_path):
|
698 |
+
mono_data = mono_data_(config)
|
699 |
+
start_time = time.time()
|
700 |
+
if config.use_multiprocessing:
|
701 |
+
if config.verbose:
|
702 |
+
with open(config.log,'a+') as fl:
|
703 |
+
print(f"Using multiprocessing on {config.num_cores} processes",file=fl)
|
704 |
+
if __name__ == "__main__":
|
705 |
+
model.share_memory()
|
706 |
+
with parallel_backend('loky'):
|
707 |
+
bt_data = Parallel(n_jobs = config.num_cores, require='sharedmem')(delayed(do_job)(data_,i,tokenizers_for_parallel) for i,data_ in tqdm(enumerate(mono_data)))
|
708 |
+
else:
|
709 |
+
bt_data = [{'inputs':get_model_translation(config,model,tokenizer,t['inputs'],t['tgt']),'targets':t['inputs'],'src':t['tgt'],'tgt':t['src']} for t in tqdm(mono_data)]
|
710 |
+
with open(config.log,'a+') as fl:
|
711 |
+
print(f'Time taken for backtranslation of data: {beautify_time(time.time()-start_time)}',file=fl)
|
712 |
+
with open(save_bt_file_path,'w') as fp:
|
713 |
+
json.dump(bt_data,fp)
|
714 |
+
|
715 |
+
else:
|
716 |
+
with open(save_bt_file_path,'r') as f:
|
717 |
+
bt_data = json.load(f)
|
718 |
+
with open(config.log,'a+') as fl:
|
719 |
+
print('-'*15+'Printing 5 random BT Data'+'-'*15,file=fl)
|
720 |
+
ids_print = random.sample([i for i in range(len(bt_data))],5)
|
721 |
+
with open(config.log,'a+') as fl:
|
722 |
+
for ids_print_ in ids_print:
|
723 |
+
|
724 |
+
print(bt_data[ids_print_],file=fl)
|
725 |
+
|
726 |
+
augmented_dataset = train_dataset + bt_data + mono_data_noise(config) #mono_data_noise adds denoising objective
|
727 |
+
random.shuffle(augmented_dataset)
|
728 |
+
|
729 |
+
with open(config.log,'a+') as fl:
|
730 |
+
print(f'New length of dataset: {len(augmented_dataset)}',file=fl)
|
731 |
+
|
732 |
+
n_batches = int(np.ceil(len(augmented_dataset) / config.batch_size))
|
733 |
+
total_steps = config.n_bt_epochs * n_batches
|
734 |
+
n_warmup_steps = int(total_steps * 0.01)
|
735 |
+
|
736 |
+
#scheduler = get_linear_schedule_with_warmup(optimizer, n_warmup_steps, total_steps)
|
737 |
+
#scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=config.lr, max_lr=0.001,cycle_momentum=False)
|
738 |
+
|
739 |
+
train(config,config.n_bt_epochs,optimizer,tokenizer,augmented_dataset,dev_dataset,n_batches,model,save_with_bt=True)
|
740 |
+
|
741 |
+
if config.verbose:
|
742 |
+
with open(config.log,'a+') as fl:
|
743 |
+
print('Evaluaton...',file=fl)
|
744 |
+
do_evaluation(config,tokenizer,model,dev_dataset)
|
745 |
+
|
746 |
+
config.state_dict_check['epoch']=-1
|
747 |
+
config.state_dict_check['batch_idx']=0
|
748 |
+
with open(config.log,'a+') as fl:
|
749 |
+
print('---------------End of Backtranslation---------------',file=fl)
|
750 |
+
|
751 |
+
with open(config.log,'a+') as fl:
|
752 |
+
print('---------------End of Training---------------',file=fl)
|
753 |
+
config.now_on_bt=False
|
754 |
+
config.now_on_test=True
|
755 |
+
with open(config.log,'a+') as fl:
|
756 |
+
print('Evaluating on test set',file=fl)
|
757 |
+
test_dataset = make_dataset(config,'test')
|
758 |
+
with open(config.log,'a+') as fl:
|
759 |
+
print(f"Length of test dataset: {len(test_dataset)}",file=fl)
|
760 |
+
do_evaluation(config,tokenizer,model,test_dataset)
|
761 |
+
|
762 |
+
with open(config.log,'a+') as fl:
|
763 |
+
print("ALL DONE",file=fl)
|
764 |
+
|
765 |
+
|
766 |
+
def load_params(args: dict) -> dict:
|
767 |
+
"""
|
768 |
+
Load the parameters passed to `translate`
|
769 |
+
"""
|
770 |
+
#if not os.path.exists(args['checkpoint']):
|
771 |
+
# raise Exception(f'Checkpoint file does not exist')
|
772 |
+
|
773 |
+
params = {}
|
774 |
+
model_repo = 'google/mt5-base'
|
775 |
+
LANG_TOKEN_MAPPING = {
|
776 |
+
'ig': '<ig>',
|
777 |
+
'fon': '<fon>',
|
778 |
+
'en': '<en>',
|
779 |
+
'fr': '<fr>',
|
780 |
+
'rw':'<rw>',
|
781 |
+
'yo':'<yo>',
|
782 |
+
'xh':'<xh>',
|
783 |
+
'sw':'<sw>'
|
784 |
+
}
|
785 |
+
tokenizer = AutoTokenizer.from_pretrained(model_repo)
|
786 |
+
|
787 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_repo)
|
788 |
+
|
789 |
+
|
790 |
+
"""## Update tokenizer"""
|
791 |
+
special_tokens_dict = {'additional_special_tokens': list(LANG_TOKEN_MAPPING.values())}
|
792 |
+
tokenizer.add_special_tokens(special_tokens_dict)
|
793 |
+
|
794 |
+
model.resize_token_embeddings(len(tokenizer))
|
795 |
+
|
796 |
+
state_dict = torch.load(args['checkpoint'],map_location=args['device'])
|
797 |
+
|
798 |
+
model.load_state_dict(state_dict['model_state_dict'])
|
799 |
+
|
800 |
+
model = model.to(args['device'])
|
801 |
+
|
802 |
+
#Load the model, load the tokenizer, max and min seq len
|
803 |
+
params['model'] = model
|
804 |
+
params['device'] = args['device']
|
805 |
+
params['max_seq_len'] = args['max_seq_len'] if 'max_seq_len' in args else 50
|
806 |
+
params['min_seq_len'] = args['min_seq_len'] if 'min_seq_len' in args else 2
|
807 |
+
params['tokenizer'] = tokenizer
|
808 |
+
params['num_beams'] = args['num_beams'] if 'num_beams' in args else 4
|
809 |
+
params['lang_token'] = LANG_TOKEN_MAPPING
|
810 |
+
params['truncation'] = args['truncation'] if 'truncation' in args else True
|
811 |
+
|
812 |
+
return params
|
813 |
+
|
814 |
+
def encode_input_str_translate(params,text, target_lang, tokenizer, seq_len):
|
815 |
+
|
816 |
+
target_lang_token = params['lang_token'][target_lang]
|
817 |
+
|
818 |
+
# Tokenize and add special tokens
|
819 |
+
input_ids = tokenizer.encode(
|
820 |
+
text = str(target_lang_token) + str(text),
|
821 |
+
return_tensors = 'pt',
|
822 |
+
padding = 'max_length',
|
823 |
+
truncation = params['truncation'] ,
|
824 |
+
max_length = seq_len)
|
825 |
+
|
826 |
+
return input_ids[0]
|
827 |
+
|
828 |
+
def translate(
|
829 |
+
params: dict,
|
830 |
+
sentence: str,
|
831 |
+
source_lang: str,
|
832 |
+
target_lang: str
|
833 |
+
) -> str:
|
834 |
+
"""
|
835 |
+
Given a sentence and its source and target sentences, this translates the sentence
|
836 |
+
to the given target sentence.
|
837 |
+
"""
|
838 |
+
|
839 |
+
|
840 |
+
if source_lang!='' and target_lang!='':
|
841 |
+
inp = [sentence]
|
842 |
+
|
843 |
+
input_tokens = [encode_input_str_translate(params,text = inp[i],target_lang = target_lang,tokenizer = params['tokenizer'],seq_len =params['max_seq_len']).unsqueeze(0).to(params['device']) for i in range(len(inp))]
|
844 |
+
output = [params['model'].generate(input_ids, num_beams=params['num_beams'], num_return_sequences=1,max_length=params['max_seq_len'],min_length=params['min_seq_len']) for input_ids in input_tokens]
|
845 |
+
output = [params['tokenizer'].decode(out[0], skip_special_tokens=True) for out in tqdm(output)]
|
846 |
+
|
847 |
+
return output[0]
|
848 |
+
|
849 |
+
else:
|
850 |
+
return ''
|
851 |
+
|
852 |
+
|
853 |
+
|
854 |
+
|
855 |
+
|
856 |
+
if __name__=="__main__":
|
857 |
+
from argparse import ArgumentParser
|
858 |
+
import json
|
859 |
+
import os
|
860 |
+
|
861 |
+
|
862 |
+
parser = ArgumentParser('MMTArica Experiments')
|
863 |
+
|
864 |
+
parser.add_argument('-homepath', type=str, default=os.getcwd(),
|
865 |
+
help="Homepath directory. Where all experiments are saved and all \
|
866 |
+
necessary files/folders are saved. (default: current working directory)")
|
867 |
+
|
868 |
+
parser.add_argument('--prediction_path', type=str, default='./predictions',
|
869 |
+
help='directory path to save predictions (default: %(default)s)')
|
870 |
+
|
871 |
+
parser.add_argument('--model_name', type=str, default='mmt_translation',
|
872 |
+
help='Name of model (default: %(default)s)')
|
873 |
+
|
874 |
+
parser.add_argument('--bt_data_dir', type=str, default='btData',
|
875 |
+
help='Directory to save back-translation files (default: %(default)s)')
|
876 |
+
|
877 |
+
parser.add_argument('--parallel_dir', type=str, default='parallel',
|
878 |
+
help='name of directory where parallel corpora is saved')
|
879 |
+
|
880 |
+
parser.add_argument('--mono_dir', type=str, default='mono',
|
881 |
+
help='name of directory where monolingual files are saved (default: %(default)s)')
|
882 |
+
|
883 |
+
parser.add_argument('--log', type=str, default='train.log',
|
884 |
+
help='name of file to log experiments (default: %(default)s)')
|
885 |
+
|
886 |
+
parser.add_argument('--mono_data_limit', type=int, default=300,
|
887 |
+
help='limit of monolingual sentences to use for training (default: %(default)s)')
|
888 |
+
|
889 |
+
parser.add_argument('--mono_data_for_noise_limit', type=int, default=50,
|
890 |
+
help='limit of monolingual sentences to use for noise (default: %(default)s)')
|
891 |
+
|
892 |
+
parser.add_argument('--n_epochs', type=int, default=10,
|
893 |
+
help='number of training epochs (default: %(default)s)')
|
894 |
+
|
895 |
+
parser.add_argument('--n_bt_epochs', type=int, default=3,
|
896 |
+
help='number of backtranslation epochs (default: %(default)s)')
|
897 |
+
|
898 |
+
parser.add_argument('--batch_size', type=int, default=64,
|
899 |
+
help='batch size (default: %(default)s)')
|
900 |
+
|
901 |
+
parser.add_argument('--max_seq_len', type=int, default=50,
|
902 |
+
help='maximum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')
|
903 |
+
|
904 |
+
parser.add_argument('--min_seq_len', type=int, default=2,
|
905 |
+
help='mnimum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')
|
906 |
+
|
907 |
+
parser.add_argument('--checkpoint_freq', type=int, default=10_000,
|
908 |
+
help='maximum length of sentence. All sentences beyond this length will be skipped. (default: %(default)s)')
|
909 |
+
|
910 |
+
parser.add_argument('--lr', type=int, default=1e-4,
|
911 |
+
help='learning rate. (default: %(default)s)')
|
912 |
+
|
913 |
+
parser.add_argument('--print_freq', type=int, default=5_000,
|
914 |
+
help='frequency at which to print to log. (default: %(default)s)')
|
915 |
+
|
916 |
+
parser.add_argument('--use_multiprocessing', type=bool, default=False,
|
917 |
+
help='whether or not to use multiprocessing. (default: %(default)s)')
|
918 |
+
|
919 |
+
parser.add_argument('--num_pretrain_steps', type=int, default=20,
|
920 |
+
help='number of pretrain steps. (default: %(default)s)')
|
921 |
+
|
922 |
+
parser.add_argument('--num_backtranslation_steps', type=int, default=5,
|
923 |
+
help='number of pretrain steps. (default: %(default)s)')
|
924 |
+
|
925 |
+
parser.add_argument('--do_backtranslation', type=bool, default=True,
|
926 |
+
help='whether or not to do backtranslation during training. (default: %(default)s)')
|
927 |
+
|
928 |
+
parser.add_argument('--use_reconstruction', type=bool, default=True,
|
929 |
+
help='whether or not to use reconstruction during training. (default: %(default)s)')
|
930 |
+
|
931 |
+
parser.add_argument('--use_torch_data_parallel', type=bool, default=False,
|
932 |
+
help='whether or not to use torch data parallelism. (default: %(default)s)')
|
933 |
+
|
934 |
+
parser.add_argument('--gradient_accumulation_batch', type=int, default=4096//64,
|
935 |
+
help='batch size for gradient accumulation. (default: %(default)s)')
|
936 |
+
|
937 |
+
parser.add_argument('--num_beams', type=int, default=4,
|
938 |
+
help='number of beams to use for inference. (default: %(default)s)')
|
939 |
+
|
940 |
+
parser.add_argument('--patience', type=int, default=15_000_000,
|
941 |
+
help='patience for early stopping. (default: %(default)s)')
|
942 |
+
|
943 |
+
parser.add_argument('--drop_probability', type=float, default=0.2,
|
944 |
+
help='drop probability for reconstruction. (default: %(default)s)')
|
945 |
+
|
946 |
+
parser.add_argument('--dropout', type=float, default=0.1,
|
947 |
+
help='dropout probability. (default: %(default)s)')
|
948 |
+
|
949 |
+
parser.add_argument('--num_swaps', type=int, default=3,
|
950 |
+
help='number of word swaps to perform during reconstruction. (default: %(default)s)')
|
951 |
+
|
952 |
+
parser.add_argument('--verbose', type=bool, default=True,
|
953 |
+
help='whether or not to print information during experiments. (default: %(default)s)')
|
954 |
+
|
955 |
+
args = parser.parse_args()
|
956 |
+
|
957 |
+
|
958 |
+
main(args)
|
959 |
+
|
960 |
+
|
961 |
+
|