Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import datetime | |
import os | |
import random | |
import time | |
import ruamel.yaml as yaml | |
import torch | |
import torch.backends.cudnn as cudnn | |
import torch.distributed as dist | |
from data.retrieval_datamodule import RetrievalDataModule | |
from model import albef_model_for_retrieval | |
from torch.optim import AdamW | |
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts | |
from utils import ( | |
add_weight_decay, | |
get_rank, | |
get_world_size, | |
init_distributed_mode, | |
is_dist_avail_and_initialized, | |
is_main_process, | |
) | |
def train(model, datamodule, args, device): | |
model.train() | |
model_without_ddp = model.module if is_dist_avail_and_initialized() else model | |
optimizer_params = add_weight_decay(model, args["weight_decay"]) | |
optimizer = AdamW(optimizer_params, lr=args["lr"]) | |
scheduler = CosineAnnealingWarmRestarts( | |
optimizer, T_0=args["max_epochs"], eta_min=args["min_lr"] | |
) | |
step_size = args["step_size"] | |
warmup_steps = args["warmup_steps"] | |
warmup_iterations = warmup_steps * step_size | |
data_loader = datamodule.train_dataloader( | |
is_distributed=is_dist_avail_and_initialized(), | |
num_tasks=get_world_size(), | |
global_rank=get_rank(), | |
) | |
start_time = time.time() | |
for epoch in range(args["max_epochs"]): | |
if epoch > 0: | |
scheduler.step(epoch + warmup_steps) | |
for batch, (image, text, text_atts, idx) in enumerate(data_loader): | |
if epoch > 0: | |
alpha = args["alpha"] | |
else: | |
alpha = args["alpha"] * min(1, batch / len(data_loader)) | |
image = image.to(device, non_blocking=True) | |
text = text.to(device) | |
text_atts = text_atts.to(device) | |
idx = idx.to(device, non_blocking=True) | |
loss = model(image, text, text_atts, idx, alpha, is_train=True) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
if epoch == 0 and batch % step_size == 0 and batch <= warmup_iterations: | |
scheduler.step(batch // step_size) | |
if batch % args["log_every_n_steps"] == 0: | |
total_time = time.time() - start_time | |
time_str = "time {},".format( | |
datetime.timedelta(seconds=int(total_time)) | |
) | |
epoch_str = "epoch {}/{},".format(epoch, args["max_epochs"]) | |
batch_str = "batch {}/{},".format(batch, len(data_loader)) | |
loss_str = "loss {}".format(loss.item()) | |
print(time_str, epoch_str, batch_str, loss_str) | |
if is_main_process(): | |
save_obj = { | |
"model": model_without_ddp.state_dict(), | |
"optimizer": optimizer.state_dict(), | |
"lr_scheduler": scheduler.state_dict(), | |
"epoch": epoch, | |
} | |
torch.save( | |
save_obj, | |
os.path.join( | |
args["checkpoint_root"], "retrieval_checkpoint_%02d.pt" % epoch | |
), | |
) | |
if is_dist_avail_and_initialized(): | |
dist.barrier() | |
torch.cuda.empty_cache() | |
def encode_text(model, text_dataloader, device): | |
text_embeds = [] | |
text_feats = [] | |
text_atts = [] | |
for text, text_att in text_dataloader: | |
text = text.to(device) | |
text_att = text_att.to(device) | |
text_embed, text_feat = model( | |
text=text, text_atts=text_att, input_type="text", is_train=False | |
) | |
text_embeds.append(text_embed) | |
text_feats.append(text_feat) | |
text_atts.append(text_att) | |
text_embeds = torch.cat(text_embeds, dim=0) | |
text_feats = torch.cat(text_feats, dim=0) | |
text_atts = torch.cat(text_atts, dim=0) | |
return text_embeds, text_feats, text_atts | |
def encode_image(model, image_dataloader, device): | |
image_embeds = [] | |
image_feats = [] | |
for image in image_dataloader: | |
image = image.to(device) | |
image_embed, image_feat = model(image=image, input_type="image", is_train=False) | |
image_embeds.append(image_embed) | |
image_feats.append(image_feat) | |
image_embeds = torch.cat(image_embeds, dim=0) | |
image_feats = torch.cat(image_feats, dim=0) | |
return image_embeds, image_feats | |
def image_to_text( | |
model, | |
image_embeds, | |
text_embeds, | |
text_atts, | |
sims_matrix, | |
num_images, | |
num_text, | |
device, | |
args, | |
): | |
start_time = time.time() | |
world_size = get_world_size() | |
rank = get_rank() | |
step = sims_matrix.size(0) // world_size + 1 | |
start = rank * step | |
end = min(sims_matrix.size(0), start + step) | |
k = args["k_test"] | |
image_to_text_scores = torch.full((num_images, num_text), -100.0).to(device) | |
for i, sims in enumerate(sims_matrix[start:end]): | |
_, topk_idx = sims.topk(k, dim=0) | |
score = model( | |
image=image_embeds[start + i].repeat(k, 1, 1), | |
text=text_embeds[topk_idx], | |
text_atts=text_atts[topk_idx], | |
input_type="multimodal", | |
is_train=False, | |
) | |
image_to_text_scores[start + i, topk_idx] = score | |
if i % args["log_every_n_steps"] == 0: | |
total_time = time.time() - start_time | |
time_str = "time {},".format(datetime.timedelta(seconds=int(total_time))) | |
batch_str = "batch {}/{},".format(i, len(sims_matrix[start:end])) | |
print("image to text retrieval", time_str, batch_str) | |
return image_to_text_scores | |
def text_to_image( | |
model, | |
image_embeds, | |
text_embeds, | |
text_atts, | |
sims_matrix, | |
num_images, | |
num_text, | |
device, | |
args, | |
): | |
start_time = time.time() | |
world_size = get_world_size() | |
rank = get_rank() | |
step = sims_matrix.size(0) // world_size + 1 | |
start = rank * step | |
end = min(sims_matrix.size(0), start + step) | |
k = args["k_test"] | |
text_to_image_scores = torch.full((num_text, num_images), -100.0).to(device) | |
for i, sims in enumerate(sims_matrix[start:end]): | |
_, topk_idx = sims.topk(k, dim=0) | |
score = model( | |
image=image_embeds[topk_idx], | |
text=text_embeds[start + i].repeat(k, 1, 1), | |
text_atts=text_atts[start + i].repeat(k, 1, 1), | |
input_type="multimodal", | |
is_train=False, | |
) | |
text_to_image_scores[start + i, topk_idx] = score | |
if i % args["log_every_n_steps"] == 0: | |
total_time = time.time() - start_time | |
time_str = "time {},".format(datetime.timedelta(seconds=int(total_time))) | |
batch_str = "batch {}/{},".format(i, len(sims_matrix[start:end])) | |
print("text to image retrieval", time_str, batch_str) | |
return text_to_image_scores | |
def evaluation(model, datamodule, args, device): | |
model.eval() | |
text_loader = datamodule.text_dataloader() | |
image_loader = datamodule.image_dataloader() | |
num_images = len(datamodule.image_dataset) | |
num_text = len(datamodule.text_dataset) | |
text_embeds, text_feats, text_atts = encode_text(model, text_loader, device) | |
image_embeds, image_feats = encode_image(model, image_loader, device) | |
sims_matrix = image_feats @ text_feats.t() | |
image_to_text_scores = image_to_text( | |
model, | |
image_embeds, | |
text_embeds, | |
text_atts, | |
sims_matrix, | |
num_images, | |
num_text, | |
device, | |
args, | |
) | |
sims_matrix = sims_matrix.t() | |
text_to_image_scores = text_to_image( | |
model, | |
image_embeds, | |
text_embeds, | |
text_atts, | |
sims_matrix, | |
num_images, | |
num_text, | |
device, | |
args, | |
) | |
if is_dist_avail_and_initialized(): | |
dist.barrier() | |
torch.distributed.all_reduce( | |
image_to_text_scores, op=torch.distributed.ReduceOp.SUM | |
) | |
torch.distributed.all_reduce( | |
text_to_image_scores, op=torch.distributed.ReduceOp.SUM | |
) | |
return image_to_text_scores.cpu(), text_to_image_scores.cpu() | |
def itm_eval( | |
image_to_text_scores, | |
text_to_image_scores, | |
image_to_text_mapping, | |
text_to_image_mapping, | |
): | |
# Images to Text | |
ranks = torch.zeros(image_to_text_scores.size(0)) | |
for index, score in enumerate(image_to_text_scores): | |
inds = torch.flip(torch.argsort(score), dims=[0]) | |
rank = 1e10 | |
# each image has multiple text mappings | |
# check retrieved inds with each ground truth mappping i | |
for i in image_to_text_mapping[index]: | |
tmp = torch.where(inds == i)[0][0] | |
if tmp < rank: | |
rank = tmp | |
ranks[index] = rank | |
# Compute metrics | |
tr1 = 100.0 * len(torch.where(ranks < 1)[0]) / len(ranks) | |
tr5 = 100.0 * len(torch.where(ranks < 5)[0]) / len(ranks) | |
tr10 = 100.0 * len(torch.where(ranks < 10)[0]) / len(ranks) | |
# Text to Images | |
ranks = torch.zeros(text_to_image_scores.size(0)) | |
for index, score in enumerate(text_to_image_scores): | |
inds = torch.flip(torch.argsort(score), dims=[0]) | |
ranks[index] = torch.where(inds == text_to_image_mapping[index])[0][0] | |
# Compute metrics | |
ir1 = 100.0 * len(torch.where(ranks < 1)[0]) / len(ranks) | |
ir5 = 100.0 * len(torch.where(ranks < 5)[0]) / len(ranks) | |
ir10 = 100.0 * len(torch.where(ranks < 10)[0]) / len(ranks) | |
tr_mean = (tr1 + tr5 + tr10) / 3 | |
ir_mean = (ir1 + ir5 + ir10) / 3 | |
r_mean = (tr_mean + ir_mean) / 2 | |
eval_result = { | |
"txt_r1": tr1, | |
"txt_r5": tr5, | |
"txt_r10": tr10, | |
"txt_r_mean": tr_mean, | |
"img_r1": ir1, | |
"img_r5": ir5, | |
"img_r10": ir10, | |
"img_r_mean": ir_mean, | |
"r_mean": r_mean, | |
} | |
return eval_result | |
def format_output( | |
image_to_text_scores, | |
text_to_image_scores, | |
image_dataset, | |
text_dataset, | |
): | |
image_to_text_output = {} | |
for index, score in enumerate(image_to_text_scores): | |
image = image_dataset.images[index] | |
top10_ids = torch.flip(torch.argsort(score), dims=[0])[:10] | |
top10_text = [text_dataset.text[i] for i in top10_ids] | |
image_to_text_output[index] = { | |
"image": image, | |
"output": top10_text, | |
} | |
text_to_image_output = {} | |
for index, score in enumerate(text_to_image_scores): | |
text = text_dataset.text[index] | |
top10_ids = torch.flip(torch.argsort(score), dims=[0])[:10] | |
top10_images = [image_dataset.images[i] for i in top10_ids] | |
text_to_image_output[index] = { | |
"text": text, | |
"output": top10_images, | |
} | |
return image_to_text_output, text_to_image_output | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", default="./examples/albef/configs/retrieval.yaml") | |
args = parser.parse_args() | |
config = yaml.load(open(args.config, "r"), Loader=yaml.Loader) | |
init_distributed_mode(config) | |
device = torch.device(config["device"]) | |
seed = config["seed"] + get_rank() | |
torch.manual_seed(seed) | |
random.seed(seed) | |
cudnn.benchmark = True | |
datamodule = RetrievalDataModule(**config["datamodule_args"]) | |
model = albef_model_for_retrieval(config, pretrained=True) | |
model = model.to(device) | |
if is_dist_avail_and_initialized(): | |
model = torch.nn.parallel.DistributedDataParallel( | |
model, device_ids=[config["gpu"]] | |
) | |
train(model, datamodule, config["training_args"], device) | |
image_to_text_scores, text_to_image_scores = evaluation( | |
model, datamodule, config["eval_args"], device | |
) | |
val_result = itm_eval( | |
image_to_text_scores, | |
text_to_image_scores, | |
datamodule.image_dataset.image_to_text, | |
datamodule.text_dataset.text_to_image, | |
) | |
image_to_text_output, text_to_image_output = format_output( | |
image_to_text_scores, | |
text_to_image_scores, | |
datamodule.image_dataset, | |
datamodule.text_dataset, | |
) | |
result = { | |
"image_to_text_output": image_to_text_output, | |
"text_to_image_output": text_to_image_output, | |
**val_result, | |
} | |
torch.save(result, config["output_path"]) | |
if __name__ == "__main__": | |
main() | |