Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import datetime | |
import os | |
import random | |
import time | |
import ruamel.yaml as yaml | |
import torch | |
import torch.backends.cudnn as cudnn | |
import torch.distributed as dist | |
from data.vqa_datamodules import VQADataModule | |
from model import albef_model_for_vqa | |
from torch.optim import AdamW | |
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts | |
from utils import ( | |
add_weight_decay, | |
get_rank, | |
get_world_size, | |
init_distributed_mode, | |
is_dist_avail_and_initialized, | |
is_main_process, | |
save_result, | |
) | |
def train(model, datamodule, args, device): | |
model_without_ddp = model.module if is_dist_avail_and_initialized() else model | |
model.train() | |
optimizer_params = add_weight_decay(model, args["weight_decay"]) | |
optimizer = AdamW(optimizer_params, lr=args["lr"]) | |
scheduler = CosineAnnealingWarmRestarts( | |
optimizer, T_0=args["max_epochs"], eta_min=args["min_lr"] | |
) | |
step_size = args["step_size"] | |
warmup_steps = args["warmup_steps"] | |
warmup_iterations = warmup_steps * step_size | |
data_loader = datamodule.train_dataloader( | |
is_distributed=is_dist_avail_and_initialized(), | |
num_tasks=get_world_size(), | |
global_rank=get_rank(), | |
) | |
start_time = time.time() | |
for epoch in range(args["max_epochs"]): | |
if is_dist_avail_and_initialized(): | |
data_loader.sampler.set_epoch(epoch) | |
if epoch > 0: | |
scheduler.step(epoch + warmup_steps) | |
for batch, ( | |
images, | |
questions, | |
questions_atts, | |
answers, | |
answers_atts, | |
ans_weights, | |
ans_lengths, | |
) in enumerate(data_loader): | |
if epoch > 0: | |
alpha = args["alpha"] | |
else: | |
alpha = args["alpha"] * min(1, batch / len(data_loader)) | |
images = images.to(device, non_blocking=True) | |
questions = questions.to(device) | |
questions_atts = questions_atts.to(device) | |
answers = answers.to(device) | |
answers_atts = answers_atts.to(device) | |
ans_weights = ans_weights.to(device) | |
loss = model( | |
images, | |
questions, | |
questions_atts, | |
answers, | |
answers_atts, | |
ans_weights=ans_weights, | |
ans_lengths=ans_lengths, | |
alpha=alpha, | |
is_train=True, | |
) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
if epoch == 0 and batch % step_size == 0 and batch <= warmup_iterations: | |
scheduler.step(batch // step_size) | |
if batch % args["log_every_n_steps"] == 0: | |
total_time = time.time() - start_time | |
time_str = "time {},".format( | |
datetime.timedelta(seconds=int(total_time)) | |
) | |
epoch_str = "epoch {}/{},".format(epoch, args["max_epochs"]) | |
batch_str = "batch {}/{},".format(batch, len(data_loader)) | |
loss_str = "loss {}".format(loss.item()) | |
print(time_str, epoch_str, batch_str, loss_str) | |
if is_main_process(): | |
save_obj = { | |
"model": model_without_ddp.state_dict(), | |
"optimizer": optimizer.state_dict(), | |
"scheduler": scheduler.state_dict(), | |
"epoch": epoch, | |
} | |
torch.save( | |
save_obj, | |
os.path.join(args["checkpoint_root"], "vqa_checkpoint_%02d.pt" % epoch), | |
) | |
if is_dist_avail_and_initialized(): | |
dist.barrier() | |
def evaluation(model, datamodule, args, device): | |
model.eval() | |
result = [] | |
answer_list = datamodule.test_dataset.answer_list | |
answer_input_ids = datamodule.test_dataset.answer_input_ids.to(device) | |
answer_atts = datamodule.test_dataset.answer_attention_mask.to(device) | |
data_loader = datamodule.test_dataloader( | |
is_distributed=is_dist_avail_and_initialized(), | |
num_tasks=get_world_size(), | |
global_rank=get_rank(), | |
) | |
start_time = time.time() | |
for batch, (img, ques, ques_atts, ques_ids) in enumerate(data_loader): | |
img = img.to(device, non_blocking=True) | |
ques = ques.to(device) | |
ques_atts = ques_atts.to(device) | |
topk_ids, topk_probs = model( | |
img, | |
ques, | |
ques_atts, | |
answer_input_ids, | |
answer_atts, | |
k=args["k_test"], | |
is_train=False, | |
) | |
for ques_id, topk_id, topk_prob in zip(ques_ids, topk_ids, topk_probs): | |
_, pred = topk_prob.max(dim=0) | |
result.append( | |
{"question_id": ques_id, "answer": answer_list[topk_id[pred]]} | |
) | |
if batch % args["log_every_n_steps"] == 0: | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print( | |
"time {}, batch {}/{}".format(total_time_str, batch, len(data_loader)) | |
) | |
return result | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", default="./examples/albef/configs/vqa.yaml") | |
args = parser.parse_args() | |
config = yaml.load(open(args.config, "r"), Loader=yaml.Loader) | |
init_distributed_mode(config) | |
device = torch.device(config["device"]) | |
seed = config["seed"] + get_rank() | |
torch.manual_seed(seed) | |
random.seed(seed) | |
cudnn.benchmark = True | |
datamodule = VQADataModule(**config["datamodule_args"]) | |
model = albef_model_for_vqa(config, pretrained=True) | |
model = model.to(device) | |
if is_dist_avail_and_initialized(): | |
model = torch.nn.parallel.DistributedDataParallel( | |
model, device_ids=[config["gpu"]] | |
) | |
train(model, datamodule, config["training_args"], device) | |
result = evaluation(model, datamodule, config["eval_args"], device) | |
save_result(result, config["output_root"], "vqa_output") | |
if __name__ == "__main__": | |
main() | |