File size: 6,578 Bytes
c114607
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd77360
c114607
 
4174fb4
 
 
c114607
 
b68875e
 
0faabd3
b68875e
 
4174fb4
c114607
 
 
 
 
 
 
4174fb4
 
 
 
 
 
b68875e
 
c114607
 
 
 
 
e7f116b
4174fb4
5540250
f787d9d
c114607
a32a927
4174fb4
 
e7f116b
 
4174fb4
c114607
8474d86
 
b68875e
 
c114607
 
 
 
e7f116b
d115c77
c114607
4174fb4
c114607
4174fb4
b68875e
4174fb4
b68875e
 
4174fb4
b68875e
c114607
4174fb4
c114607
4174fb4
c114607
4174fb4
 
 
 
c114607
4174fb4
 
 
b68875e
4174fb4
b68875e
4174fb4
 
 
 
 
b68875e
4174fb4
 
 
 
 
 
b68875e
4174fb4
 
 
 
 
 
 
c114607
4174fb4
 
c114607
 
4174fb4
c114607
 
4174fb4
 
c114607
 
 
 
4174fb4
b68875e
 
 
 
 
 
4174fb4
b68875e
4174fb4
b68875e
4174fb4
 
c114607
f936bb8
c114607
 
 
b68875e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import numpy as np
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import LLMChain
from langchain import PromptTemplate
import re
import pandas as pd
from langchain.vectorstores import FAISS
import requests
from typing import List
from langchain.schema import (
    SystemMessage,
    HumanMessage,
    AIMessage
)
import os
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chat_models import ChatOpenAI

from langchain.llms.base import LLM
from typing import Optional, List, Mapping, Any

import ast
from utils import ClaudeLLM, ClaudeLLM2, extract_website_name, remove_numbers

embeddings = HuggingFaceEmbeddings()

db_art = FAISS.load_local('db_art', embeddings)
db_yt = FAISS.load_local('db_yt', embeddings)

mp_docs = {}
llm_4 = ChatOpenAI(
            temperature=0,
            model='gpt-4'
        )
claude = ClaudeLLM()
claude2 = ClaudeLLM2()
def add_text(history, text):

    print(history)
    history = history + [(text, None)]

    return history, ""

def retrieve_thoughts(query, media):
    if media[0] == "Articles":
          db = db_art
    else:
      db = db_yt

  # print(db.similarity_search_with_score(query = query, k = k, fetch_k = k*10))
    docs_with_score = db.similarity_search_with_score(query = query, k = 1500, fetch_k = len(db.index_to_docstore_id.values()))
    df = pd.DataFrame([dict(doc[0])['metadata'] for doc in docs_with_score], )
    df = pd.concat((df, pd.DataFrame([dict(doc[0])['page_content'] for doc in docs_with_score], columns = ['page_content'])), axis = 1)
    df = pd.concat((df, pd.DataFrame([doc[1] for doc in docs_with_score], columns = ['score'])), axis = 1)

  # TO-DO: What if user query doesn't match what we provide as documents
  # df.sort_values("score", inplace = True)

    tier_1 = df
    tier_2 = df[((df['score'] < 1) * (df["score"] > 0.8))]

    tier_1
    chunks_1 = tier_1.groupby(['title', 'url', ]).apply(lambda x: "\n...\n".join(x.sort_values('id')['page_content'].values)).values
    print(len(chunks_1[0]))
    score = tier_1.groupby(['title', 'url', ]).apply(lambda x: x.sort_values('score').iloc[:3]['score'].mean()).values

    tier_1_adjusted = tier_1.groupby(['title', 'url', ]).first().reset_index()[[ 'title', 'url']]
    tier_1_adjusted['content'] = chunks_1
    tier_1_adjusted['score'] = score

    chunks_2 = tier_2.groupby(['title', 'url', ]).apply(lambda x: "\n...\n".join(x.sort_values('id')['page_content'].values)).values
    tier_2_adjusted = tier_2.groupby(['title', 'url', ]).first().reset_index()[[ 'title', 'url']]
    tier_2_adjusted['content'] = chunks_2

  # tier_1 = [doc[0]  for doc in docs if ((doc[1] < 1))][:5]
  # tier_2 = [doc[0]  for doc in docs if ((doc[1] > 0.7)*(doc[1] < 1.5))][10:15]
    tier_1_adjusted.sort_values("score", inplace = True)
    tier_1_adjusted['ref'] = range(1, len(tier_1_adjusted) + 1 )

    return {'tier 1':tier_1_adjusted[:min(len(tier_1_adjusted), 30)], 'tier 2': tier_2_adjusted.loc[:5]}

def get_references(query, media):
  # TO-DO FINSIH UPP.
  thoughts = retrieve_thoughts(query, media)
  print(thoughts.keys())
  tier_1 = thoughts['tier 1']
  reference = tier_1[['ref', 'url', 'title']].to_dict('records')
  return reference

def grab_jsons(query, media = None, tier_1 = None, ):

  response = ""

  if tier_1 is None:
      thoughts = retrieve_thoughts(query, media)
      tier_1 = thoughts['tier 1']
      tier_1 = list(tier_1.apply(lambda x: f"[{int(x['ref'])}] title: {x['title']}\n Content: {x.content}", axis = 1).values)

  for i in range(3, len(tier_1), 3):
    portion = tier_1[i - 3 :i]
    response += '\n' + jsonify_articles(query, portion)

  return response

def jsonify_articles(query, tier_1 = None):
    if tier_1 is None:
      thoughts = retrieve_thoughts(query)
      tier_1 = thoughts['tier 1']
      tier_1 = list(tier_1.apply(lambda x: f"[{int(x['ref'])}] title: {x['title']}\n Content: {x.content}", axis = 1).values)

        # json
#         {
#     'ref': 1,
#     'quotes': ['quote_1', 'quote_2', 'quote_3'],
#     'summary (optional for now as we already have summaries)': ""
# }

    session_prompt = """ A bot that is open to discussions about different cultural, philosophical and political exchanges. You will execute different analysis to the articles provided to you. Stay truthful and if you weren't provided any resources give your oppinion only."""
    task = """Your primary responsibility is to identify valuable information from the given articles related to a given query.
    For each article provided, you are to present it under four separate categories:
    1. Article Reference - A reference for the article id: int
    2. Article Title - The title for the article: string
    3. Article quotes - Numerous Quotes extracted from the article that prove certain point of views in a list format [quote_1, quote_2, quote_3, quote_4, quote_5]
    4. Article Summary - A summary for the article: string

    Make sure to include all valuable quotes to be used later on.
    Keep your answer direct and don't include your thoughts. Make sure that the quote used should have a reference [1] that identifies the source."""

    prompt = PromptTemplate(
            input_variables=["query", "task", "articles"],
            template="""
            {task}

            The extracted information should correlate to the following query.
            query: {query}
            Articles:
            {articles}

            The extracted information should be written in structured manner, ensuring clarity and meaningful format for the articles. Avoid including personal opinions or making generalizations that are not explicitly supported by the articles.
            Keep your answer direct and don't include your thoughts.
            """,
        )

    chain = LLMChain(llm=claude, prompt = prompt)

    json_articles = chain.run(query=query, articles="\n".join(tier_1), task = task).strip()

    return json_articles

reference = gr.Interface(fn = get_references, inputs = ["text", gr.CheckboxGroup(["Articles", "Podcasts", "Youtube"], label="Media", info="Choose One Type of Media until we merge (Podcasts excluded for now)"),], outputs = "json", label = "Reference")
json = gr.Interface(fn = grab_jsons, inputs = ["text", gr.CheckboxGroup(["Articles", "Podcasts", "Youtube"], label="Media", info="Choose One Type of Media until we merge (Podcasts excluded for now)"),], outputs = gr.components.Textbox(lines=3, label="json"))

demo = gr.Parallel(json, reference)
demo.queue(concurrency_count = 4)
demo.launch()