Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -56,7 +56,7 @@ def retrieve_thoughts(query, ):
|
|
56 |
chunks_1 = tier_1.groupby(['title', 'url', ]).apply(lambda x: "\n...\n".join(x.sort_values('score').iloc[:3].sort_values('id')['page_content'].values)).values
|
57 |
score = tier_1.groupby(['title', 'url', ]).apply(lambda x: x.sort_values('score').iloc[:3]['score'].mean()).values
|
58 |
|
59 |
-
tier_1_adjusted = tier_1.groupby(['title', 'url', ]).first().reset_index()[[ 'title', 'url']]
|
60 |
tier_1_adjusted['content'] = chunks_1
|
61 |
tier_1_adjusted['score'] = score
|
62 |
|
@@ -77,7 +77,7 @@ def get_references(query):
|
|
77 |
thoughts = retrieve_thoughts(query)
|
78 |
print(thoughts.keys())
|
79 |
tier_1 = thoughts['tier 1']
|
80 |
-
reference = tier_1[['ref', 'url', 'title']].to_dict('records')
|
81 |
return reference
|
82 |
def qa_themes(query,):
|
83 |
|
@@ -98,9 +98,9 @@ def qa_themes(query,):
|
|
98 |
tier_1 = thoughts['tier 1']
|
99 |
tier_2 = thoughts['tier 2']
|
100 |
|
101 |
-
reference = tier_1[['ref', 'url', 'title']].to_dict('records')
|
102 |
|
103 |
-
tier_1 = list(tier_1.apply(lambda x: f"[{int(x['ref'])}] title: {x['title']}\n
|
104 |
tier_2 = list(tier_2.apply(lambda x: f"title: {x['title']}\n Content: {x.content}", axis = 1).values)
|
105 |
print(f"QUERY: {query}\nTIER 1: {tier_1}\nTIER2: {tier_2}")
|
106 |
|
@@ -164,7 +164,7 @@ def qa_retrieve(query,):
|
|
164 |
|
165 |
reference = tier_1[['ref', 'url', 'title']].to_dict('records')
|
166 |
|
167 |
-
tier_1 = list(tier_1.apply(lambda x: f"[{int(x['ref'])}] title: {x['title']}\n
|
168 |
tier_2 = list(tier_2.apply(lambda x: f"title: {x['title']}\n Content: {x.content}", axis = 1).values)
|
169 |
print(f"QUERY: {query}\nTIER 1: {tier_1}\nTIER2: {tier_2}")
|
170 |
|
@@ -226,7 +226,7 @@ def qa_intro(query, cynthesis, tier_1,):
|
|
226 |
|
227 |
llm = ClaudeLLM()
|
228 |
llm_4 = ChatOpenAI(
|
229 |
-
temperature=0,
|
230 |
model='gpt-3.5-turbo-16k'
|
231 |
)
|
232 |
|
@@ -235,7 +235,7 @@ def qa_intro(query, cynthesis, tier_1,):
|
|
235 |
prompt = PromptTemplate(
|
236 |
input_variables=["query", "cynthesis", "articles"],
|
237 |
template="""
|
238 |
-
Give me an introduction to the following consensus without repeating how it starts. Consider
|
239 |
|
240 |
query: {query}
|
241 |
Here's the consensus: {cynthesis}
|
|
|
56 |
chunks_1 = tier_1.groupby(['title', 'url', ]).apply(lambda x: "\n...\n".join(x.sort_values('score').iloc[:3].sort_values('id')['page_content'].values)).values
|
57 |
score = tier_1.groupby(['title', 'url', ]).apply(lambda x: x.sort_values('score').iloc[:3]['score'].mean()).values
|
58 |
|
59 |
+
tier_1_adjusted = tier_1.groupby(['title', 'url', ]).first().reset_index()[[ 'title', 'url', 'author']]
|
60 |
tier_1_adjusted['content'] = chunks_1
|
61 |
tier_1_adjusted['score'] = score
|
62 |
|
|
|
77 |
thoughts = retrieve_thoughts(query)
|
78 |
print(thoughts.keys())
|
79 |
tier_1 = thoughts['tier 1']
|
80 |
+
reference = tier_1[['ref', 'url', 'title', 'author']].to_dict('records')
|
81 |
return reference
|
82 |
def qa_themes(query,):
|
83 |
|
|
|
98 |
tier_1 = thoughts['tier 1']
|
99 |
tier_2 = thoughts['tier 2']
|
100 |
|
101 |
+
reference = tier_1[['ref', 'url', 'title', 'author']].to_dict('records')
|
102 |
|
103 |
+
tier_1 = list(tier_1.apply(lambda x: f"[{int(x['ref'])}] title: {x['title']}\n author: {x.author}\n content: {x.content}", axis = 1).values)
|
104 |
tier_2 = list(tier_2.apply(lambda x: f"title: {x['title']}\n Content: {x.content}", axis = 1).values)
|
105 |
print(f"QUERY: {query}\nTIER 1: {tier_1}\nTIER2: {tier_2}")
|
106 |
|
|
|
164 |
|
165 |
reference = tier_1[['ref', 'url', 'title']].to_dict('records')
|
166 |
|
167 |
+
tier_1 = list(tier_1.apply(lambda x: f"[{int(x['ref'])}] title: {x['title']}\n author: {x.author}\n content: {x.content}", axis = 1).values)
|
168 |
tier_2 = list(tier_2.apply(lambda x: f"title: {x['title']}\n Content: {x.content}", axis = 1).values)
|
169 |
print(f"QUERY: {query}\nTIER 1: {tier_1}\nTIER2: {tier_2}")
|
170 |
|
|
|
226 |
|
227 |
llm = ClaudeLLM()
|
228 |
llm_4 = ChatOpenAI(
|
229 |
+
temperature=0.5,
|
230 |
model='gpt-3.5-turbo-16k'
|
231 |
)
|
232 |
|
|
|
235 |
prompt = PromptTemplate(
|
236 |
input_variables=["query", "cynthesis", "articles"],
|
237 |
template="""
|
238 |
+
Give me an introduction to the following consensus without repeating how it starts. Consider what you will write an abstract. And after finishing the introduction, pick one quote from the sources given below.
|
239 |
|
240 |
query: {query}
|
241 |
Here's the consensus: {cynthesis}
|