RanM commited on
Commit
575d097
·
verified ·
1 Parent(s): 28413d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -10
app.py CHANGED
@@ -17,21 +17,19 @@ class ModelActor:
17
  """
18
  self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
19
 
20
- async def generate_image(self, prompt, prompt_name):
21
  """
22
  Generates an image based on the provided prompt.
23
-
24
  Parameters:
25
  - prompt (str): The input text for image generation.
26
  - prompt_name (str): A name for the prompt, used for logging.
27
-
28
  Returns:
29
  bytes: The generated image data in bytes format, or None if generation fails.
30
  """
31
  start_time = time.time()
32
  process_id = os.getpid()
33
  try:
34
- output = await self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
35
  if isinstance(output.images, list) and len(output.images) > 0:
36
  image = output.images[0]
37
  buffered = BytesIO()
@@ -47,12 +45,10 @@ class ModelActor:
47
  async def queue_api_calls(sentence_mapping, character_dict, selected_style):
48
  """
49
  Generates images for all provided prompts in parallel using Ray actors.
50
-
51
  Parameters:
52
  - sentence_mapping (dict): Mapping between paragraph numbers and sentences.
53
  - character_dict (dict): Dictionary mapping characters to their descriptions.
54
  - selected_style (str): Selected illustration style.
55
-
56
  Returns:
57
  dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
58
  """
@@ -67,19 +63,17 @@ async def queue_api_calls(sentence_mapping, character_dict, selected_style):
67
  model_actors = [ModelActor.remote() for _ in range(num_actors)]
68
  tasks = [model_actors[i % num_actors].generate_image.remote(prompt, f"Prompt {paragraph_number}") for i, (paragraph_number, prompt) in enumerate(prompts)]
69
 
70
- responses = await asyncio.gather(*[asyncio.to_thread(ray.get, task) for task in tasks])
71
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
72
  return images
73
 
74
  def process_prompt(sentence_mapping, character_dict, selected_style):
75
  """
76
  Processes the provided prompts and generates images.
77
-
78
  Parameters:
79
  - sentence_mapping (dict): Mapping between paragraph numbers and sentences.
80
  - character_dict (dict): Dictionary mapping characters to their descriptions.
81
  - selected_style (str): Selected illustration style.
82
-
83
  Returns:
84
  dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
85
  """
@@ -99,4 +93,4 @@ gradio_interface = gr.Interface(
99
  )
100
 
101
  if __name__ == "__main__":
102
- gradio_interface.launch()
 
17
  """
18
  self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
19
 
20
+ def generate_image(self, prompt, prompt_name):
21
  """
22
  Generates an image based on the provided prompt.
 
23
  Parameters:
24
  - prompt (str): The input text for image generation.
25
  - prompt_name (str): A name for the prompt, used for logging.
 
26
  Returns:
27
  bytes: The generated image data in bytes format, or None if generation fails.
28
  """
29
  start_time = time.time()
30
  process_id = os.getpid()
31
  try:
32
+ output = self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
33
  if isinstance(output.images, list) and len(output.images) > 0:
34
  image = output.images[0]
35
  buffered = BytesIO()
 
45
  async def queue_api_calls(sentence_mapping, character_dict, selected_style):
46
  """
47
  Generates images for all provided prompts in parallel using Ray actors.
 
48
  Parameters:
49
  - sentence_mapping (dict): Mapping between paragraph numbers and sentences.
50
  - character_dict (dict): Dictionary mapping characters to their descriptions.
51
  - selected_style (str): Selected illustration style.
 
52
  Returns:
53
  dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
54
  """
 
63
  model_actors = [ModelActor.remote() for _ in range(num_actors)]
64
  tasks = [model_actors[i % num_actors].generate_image.remote(prompt, f"Prompt {paragraph_number}") for i, (paragraph_number, prompt) in enumerate(prompts)]
65
 
66
+ responses = await asyncio.gather(*[ray.get(task) for task in tasks])
67
  images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
68
  return images
69
 
70
  def process_prompt(sentence_mapping, character_dict, selected_style):
71
  """
72
  Processes the provided prompts and generates images.
 
73
  Parameters:
74
  - sentence_mapping (dict): Mapping between paragraph numbers and sentences.
75
  - character_dict (dict): Dictionary mapping characters to their descriptions.
76
  - selected_style (str): Selected illustration style.
 
77
  Returns:
78
  dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
79
  """
 
93
  )
94
 
95
  if __name__ == "__main__":
96
+ gradio_interface.launch()