import gradio as gr import torch from diffusers import DiffusionPipeline def load_amused_model(): return DiffusionPipeline.from_pretrained("amused/amused-256") # Generate image from prompt using AmusedPipeline def generate_image(prompt): try: pipe = load_amused_model() generator = torch.Generator().manual_seed(8) # Create a generator for reproducibility image = pipe(prompt, generator=generator).images[0] # Generate image from prompt return image, None except Exception as e: return None, str(e) def inference(prompt): image, error = generate_image(prompt) if error: return "Error: " + error return image gradio_interface = gr.Interface( fn=inference, inputs="text", outputs="image" ) if __name__ == "__main__": gradio_interface.launch()