Spaces:
Sleeping
Sleeping
import os | |
from io import BytesIO | |
from PIL import Image | |
from diffusers import AutoPipelineForText2Image | |
import gradio as gr | |
import base64 | |
from generate_prompts import generate_prompt | |
CONCURRENCY_LIMIT = 10 | |
def load_model(): | |
print("Loading the Stable Diffusion model...") | |
try: | |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") | |
print("Model loaded successfully.") | |
return model | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
return None | |
def generate_image(prompt): | |
model = load_model() | |
try: | |
if model is None: | |
raise ValueError("Model not loaded properly.") | |
print(f"Generating image with prompt: {prompt}") | |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) | |
print(f"Model output: {output}") | |
if output is None: | |
raise ValueError("Model returned None") | |
if hasattr(output, 'images') and output.images: | |
print(f"Image generated successfully") | |
image = output.images[0] | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
image_bytes = buffered.getvalue() | |
img_str = base64.b64encode(image_bytes).decode("utf-8") | |
print("Image encoded to base64") | |
print(f'img_str: {img_str[:100]}...') # Print a snippet of the base64 string | |
return img_str, None | |
else: | |
print(f"No images found in model output") | |
raise ValueError("No images found in model output") | |
except Exception as e: | |
print(f"An error occurred while generating image: {e}") | |
return None, str(e) | |
def inference(sentence_mapping, character_dict, selected_style): | |
try: | |
print(f"Received sentence_mapping: {sentence_mapping}, type: {type(sentence_mapping)}") | |
print(f"Received character_dict: {character_dict}, type: {type(character_dict)}") | |
print(f"Received selected_style: {selected_style}, type: {type(selected_style)}") | |
images = {} | |
for paragraph_number, sentences in sentence_mapping.items(): | |
combined_sentence = " ".join(sentences) | |
prompt = generate_prompt(combined_sentence,character_dict, selected_style) | |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") | |
img_str, error = generate_image(prompt) | |
if error: | |
images[paragraph_number] = f"Error: {error}" | |
else: | |
images[paragraph_number] = img_str | |
return images | |
except Exception as e: | |
print(f"An error occurred during inference: {e}") | |
return {"error": str(e)} | |
gradio_interface = gr.Interface( | |
fn=inference, | |
inputs=[ | |
gr.JSON(label="Sentence Mapping"), | |
gr.JSON(label="Character Dict"), | |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") | |
], | |
outputs="json", | |
concurrency_limit=CONCURRENCY_LIMIT) | |
if __name__ == "__main__": | |
print("Launching Gradio interface...") | |
gradio_interface.launch() | |