Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,79 +1,82 @@
|
|
1 |
import os
|
2 |
from io import BytesIO
|
|
|
3 |
from diffusers import AutoPipelineForText2Image
|
4 |
import gradio as gr
|
5 |
import base64
|
6 |
-
from generate_prompts import generate_prompt
|
7 |
|
8 |
# Load the model once at the start
|
9 |
print("Loading the Stable Diffusion model...")
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
prompt = " ".join(tokens[:max_length])
|
17 |
-
return prompt
|
18 |
|
19 |
def generate_image(prompt):
|
20 |
try:
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
# Call the model
|
25 |
-
output = model(prompt=truncated_prompt, num_inference_steps=1, guidance_scale=0.0)
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
image = output.images[0]
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
else:
|
33 |
-
print(f"No images found
|
34 |
-
|
35 |
except Exception as e:
|
36 |
print(f"An error occurred while generating image: {e}")
|
37 |
return None, str(e)
|
38 |
|
39 |
-
def inference(
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
print(f"
|
44 |
-
return "Error: " + error
|
45 |
-
|
46 |
-
buffered = BytesIO()
|
47 |
-
image.save(buffered, format="PNG")
|
48 |
-
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
49 |
-
return img_str
|
50 |
-
|
51 |
-
def process_prompt(sentence_mapping, character_dict, selected_style):
|
52 |
-
print("Processing prompt...")
|
53 |
-
print(f"Sentence Mapping: {sentence_mapping}")
|
54 |
-
print(f"Character Dict: {character_dict}")
|
55 |
-
print(f"Selected Style: {selected_style}")
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
combined_sentence = " ".join(sentences)
|
60 |
-
prompt, _ = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
|
61 |
-
img_str = inference(prompt)
|
62 |
-
images[paragraph_number] = img_str
|
63 |
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
gradio_interface = gr.Interface(
|
68 |
-
fn=
|
69 |
inputs=[
|
70 |
gr.JSON(label="Sentence Mapping"),
|
71 |
gr.JSON(label="Character Dict"),
|
72 |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
|
73 |
],
|
74 |
outputs="json"
|
75 |
-
)
|
76 |
|
77 |
if __name__ == "__main__":
|
78 |
print("Launching Gradio interface...")
|
79 |
-
gradio_interface.launch()
|
|
|
1 |
import os
|
2 |
from io import BytesIO
|
3 |
+
from PIL import Image
|
4 |
from diffusers import AutoPipelineForText2Image
|
5 |
import gradio as gr
|
6 |
import base64
|
|
|
7 |
|
8 |
# Load the model once at the start
|
9 |
print("Loading the Stable Diffusion model...")
|
10 |
+
try:
|
11 |
+
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
|
12 |
+
print("Model loaded successfully.")
|
13 |
+
except Exception as e:
|
14 |
+
print(f"Error loading model: {e}")
|
15 |
+
model = None
|
|
|
|
|
16 |
|
17 |
def generate_image(prompt):
|
18 |
try:
|
19 |
+
if model is None:
|
20 |
+
raise ValueError("Model not loaded properly.")
|
|
|
|
|
|
|
21 |
|
22 |
+
print(f"Generating image with prompt: {prompt}")
|
23 |
+
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
|
24 |
+
print(f"Model output: {output}")
|
25 |
+
|
26 |
+
if output is None:
|
27 |
+
raise ValueError("Model returned None")
|
28 |
+
|
29 |
+
if hasattr(output, 'images') and output.images:
|
30 |
+
print(f"Image generated successfully")
|
31 |
image = output.images[0]
|
32 |
+
buffered = BytesIO()
|
33 |
+
image.save(buffered, format="JPEG")
|
34 |
+
image_bytes = buffered.getvalue()
|
35 |
+
img_str = base64.b64encode(image_bytes).decode("utf-8")
|
36 |
+
print("Image encoded to base64")
|
37 |
+
print(f'img_str: {img_str[:100]}...') # Print a snippet of the base64 string
|
38 |
+
return img_str, None
|
39 |
else:
|
40 |
+
print(f"No images found in model output")
|
41 |
+
raise ValueError("No images found in model output")
|
42 |
except Exception as e:
|
43 |
print(f"An error occurred while generating image: {e}")
|
44 |
return None, str(e)
|
45 |
|
46 |
+
def inference(sentence_mapping, character_dict, selected_style):
|
47 |
+
try:
|
48 |
+
print(f"Received sentence_mapping: {sentence_mapping}, type: {type(sentence_mapping)}")
|
49 |
+
print(f"Received character_dict: {character_dict}, type: {type(character_dict)}")
|
50 |
+
print(f"Received selected_style: {selected_style}, type: {type(selected_style)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
if sentence_mapping is None or character_dict is None or selected_style is None:
|
53 |
+
return {"error": "One or more inputs are None"}
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
images = {}
|
56 |
+
for paragraph_number, sentences in sentence_mapping.items():
|
57 |
+
combined_sentence = " ".join(sentences)
|
58 |
+
prompt = f"Make an illustration in {selected_style} style from: {combined_sentence}"
|
59 |
+
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}")
|
60 |
+
img_str, error = generate_image(prompt)
|
61 |
+
if error:
|
62 |
+
images[paragraph_number] = f"Error: {error}"
|
63 |
+
else:
|
64 |
+
images[paragraph_number] = img_str
|
65 |
+
return images
|
66 |
+
except Exception as e:
|
67 |
+
print(f"An error occurred during inference: {e}")
|
68 |
+
return {"error": str(e)}
|
69 |
|
70 |
gradio_interface = gr.Interface(
|
71 |
+
fn=inference,
|
72 |
inputs=[
|
73 |
gr.JSON(label="Sentence Mapping"),
|
74 |
gr.JSON(label="Character Dict"),
|
75 |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")
|
76 |
],
|
77 |
outputs="json"
|
78 |
+
)
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
print("Launching Gradio interface...")
|
82 |
+
gradio_interface.launch()
|