|
import albumentations as A |
|
import cv2 |
|
import torch |
|
|
|
from albumentations.pytorch import ToTensorV2 |
|
from utils import seed_everything |
|
|
|
DATASET = '/content/PASCAL_VOC' |
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
NUM_WORKERS = 2 |
|
BATCH_SIZE = 32 |
|
IMAGE_SIZE = 416 |
|
NUM_CLASSES = 20 |
|
LEARNING_RATE = 1e-3 |
|
WEIGHT_DECAY = 1e-4 |
|
NUM_EPOCHS = 40 |
|
CONF_THRESHOLD = 0.05 |
|
MAP_IOU_THRESH = 0.5 |
|
NMS_IOU_THRESH = 0.45 |
|
S = [IMAGE_SIZE // 32, IMAGE_SIZE // 16, IMAGE_SIZE // 8] |
|
PIN_MEMORY = True |
|
LOAD_MODEL = False |
|
SAVE_MODEL = True |
|
CHECKPOINT_FILE = "checkpoint.pth.tar" |
|
IMG_DIR = DATASET + "/images/" |
|
LABEL_DIR = DATASET + "/labels/" |
|
|
|
ANCHORS = [ |
|
[(0.28, 0.22), (0.38, 0.48), (0.9, 0.78)], |
|
[(0.07, 0.15), (0.15, 0.11), (0.14, 0.29)], |
|
[(0.02, 0.03), (0.04, 0.07), (0.08, 0.06)], |
|
] |
|
|
|
SCALED_ANCHORS = ( |
|
torch.tensor(ANCHORS) * torch.tensor(S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2) |
|
).to(device="cuda") |
|
means = [0.485, 0.456, 0.406] |
|
|
|
scale = 1.1 |
|
train_transforms = A.Compose( |
|
[ |
|
A.LongestMaxSize(max_size=int(IMAGE_SIZE * scale)), |
|
A.PadIfNeeded( |
|
min_height=int(IMAGE_SIZE * scale), |
|
min_width=int(IMAGE_SIZE * scale), |
|
border_mode=cv2.BORDER_CONSTANT, |
|
), |
|
A.Rotate(limit = 10, interpolation=1, border_mode=4), |
|
A.RandomCrop(width=IMAGE_SIZE, height=IMAGE_SIZE), |
|
A.ColorJitter(brightness=0.6, contrast=0.6, saturation=0.6, hue=0.6, p=0.4), |
|
A.OneOf( |
|
[ |
|
A.ShiftScaleRotate( |
|
rotate_limit=20, p=0.5, border_mode=cv2.BORDER_CONSTANT |
|
), |
|
|
|
], |
|
p=1.0, |
|
), |
|
A.HorizontalFlip(p=0.5), |
|
A.Blur(p=0.1), |
|
A.CLAHE(p=0.1), |
|
A.Posterize(p=0.1), |
|
A.ToGray(p=0.1), |
|
A.ChannelShuffle(p=0.05), |
|
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,), |
|
ToTensorV2(), |
|
], |
|
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[],), |
|
) |
|
test_transforms = A.Compose( |
|
[ |
|
A.LongestMaxSize(max_size=IMAGE_SIZE), |
|
A.PadIfNeeded( |
|
min_height=IMAGE_SIZE, min_width=IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT |
|
), |
|
A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,), |
|
ToTensorV2(), |
|
], |
|
bbox_params=A.BboxParams(format="yolo", min_visibility=0.4, label_fields=[]), |
|
) |
|
|
|
PASCAL_CLASSES = [ |
|
"aeroplane", |
|
"bicycle", |
|
"bird", |
|
"boat", |
|
"bottle", |
|
"bus", |
|
"car", |
|
"cat", |
|
"chair", |
|
"cow", |
|
"diningtable", |
|
"dog", |
|
"horse", |
|
"motorbike", |
|
"person", |
|
"pottedplant", |
|
"sheep", |
|
"sofa", |
|
"train", |
|
"tvmonitor" |
|
] |
|
|
|
COCO_LABELS = ['person', |
|
'bicycle', |
|
'car', |
|
'motorcycle', |
|
'airplane', |
|
'bus', |
|
'train', |
|
'truck', |
|
'boat', |
|
'traffic light', |
|
'fire hydrant', |
|
'stop sign', |
|
'parking meter', |
|
'bench', |
|
'bird', |
|
'cat', |
|
'dog', |
|
'horse', |
|
'sheep', |
|
'cow', |
|
'elephant', |
|
'bear', |
|
'zebra', |
|
'giraffe', |
|
'backpack', |
|
'umbrella', |
|
'handbag', |
|
'tie', |
|
'suitcase', |
|
'frisbee', |
|
'skis', |
|
'snowboard', |
|
'sports ball', |
|
'kite', |
|
'baseball bat', |
|
'baseball glove', |
|
'skateboard', |
|
'surfboard', |
|
'tennis racket', |
|
'bottle', |
|
'wine glass', |
|
'cup', |
|
'fork', |
|
'knife', |
|
'spoon', |
|
'bowl', |
|
'banana', |
|
'apple', |
|
'sandwich', |
|
'orange', |
|
'broccoli', |
|
'carrot', |
|
'hot dog', |
|
'pizza', |
|
'donut', |
|
'cake', |
|
'chair', |
|
'couch', |
|
'potted plant', |
|
'bed', |
|
'dining table', |
|
'toilet', |
|
'tv', |
|
'laptop', |
|
'mouse', |
|
'remote', |
|
'keyboard', |
|
'cell phone', |
|
'microwave', |
|
'oven', |
|
'toaster', |
|
'sink', |
|
'refrigerator', |
|
'book', |
|
'clock', |
|
'vase', |
|
'scissors', |
|
'teddy bear', |
|
'hair drier', |
|
'toothbrush' |
|
] |
|
|