RashiAgarwal commited on
Commit
4258cd5
·
1 Parent(s): 92299a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +126 -26
app.py CHANGED
@@ -1,36 +1,136 @@
1
- # Gradio app for YOLOv3
2
-
3
  import numpy as np
4
  import gradio as gr
 
 
 
 
5
  from pytorch_grad_cam import GradCAM
6
  from pytorch_grad_cam.utils.image import show_cam_on_image
7
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
8
- from display import inference, draw_predictions
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
 
 
 
 
10
 
11
- gr.Interface(
12
- inference,
13
- inputs=[
14
- gr.Image(label="Input Image"),
15
- gr.Slider(0, 1, value=0.75, label="IOU Threshold"),
16
- gr.Slider(0, 1, value=0.75, label="Threshold"),
 
 
 
 
17
  ],
18
- outputs=gr.Gallery(rows=2, columns=1),
19
- title = "Object Detection : YoloV3 on PASCAL VOC Dataset From Scratch"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- ,examples=[
22
- ["Examples/000001.jpg", 0.75, 0.75, True, 0.5],
23
- ["Examples/000002.jpg", 0.75, 0.75, True, 0.5],
24
- ["Examples/000003.jpg", 0.75, 0.75, True, 0.5],
25
- ["Examples/000004.jpg", 0.75, 0.75, True, 0.5],
26
- ["Examples/000005.jpg", 0.75, 0.75, True, 0.5],
27
- ["Examples/000006.jpg", 0.75, 0.75, True, 0.5],
28
- ["Examples/000007.jpg", 0.75, 0.75, True, 0.5],
29
- ["Examples/000008.jpg", 0.75, 0.75, True, 0.5],
30
- ["Examples/000009.jpg", 0.75, 0.75, True, 0.5],
31
- ["Examples/000010.jpg", 0.75, 0.75, True, 0.5]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ]
33
-
34
- ,
35
- layout="horizontal"
36
- ).launch()
 
1
+ import torch
2
+ import pandas as pd
3
  import numpy as np
4
  import gradio as gr
5
+ from PIL import Image
6
+ from torch.nn import functional as F
7
+ from collections import OrderedDict
8
+ from torchvision import transforms
9
  from pytorch_grad_cam import GradCAM
10
  from pytorch_grad_cam.utils.image import show_cam_on_image
11
  from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
12
+ from pytorch_lightning import LightningModule, Trainer, seed_everything
13
+ import albumentations as A
14
+ from albumentations.pytorch import ToTensorV2
15
+ import torchvision.transforms as T
16
+ from model import YOLOv3
17
+ from train import YOLOTraining
18
+ import config
19
+ from utils import *
20
+ import numpy as np
21
+ import cv2
22
+ import albumentations as A
23
+ from utils import *
24
+ import random
25
+ from albumentations.pytorch import ToTensorV2
26
 
27
+ model = YOLOv3(num_classes=config.NUM_CLASSES)
28
+ model = YOLOTraining(model)
29
+ model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False)
30
+ model.eval()
31
 
32
+ def yolo_predict(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.5):
33
+
34
+ transforms = A.Compose(
35
+ [
36
+ A.LongestMaxSize(max_size=config.IMAGE_SIZE),
37
+ A.PadIfNeeded(
38
+ min_height=config.IMAGE_SIZE, min_width=config.IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT
39
+ ),
40
+ A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,),
41
+ ToTensorV2(),
42
  ],
43
+ )
44
+ with torch.no_grad():
45
+ transformed_image = transforms(image=image)["image"].unsqueeze(0).to(config.DEVICE)
46
+ output = model(transformed_image)
47
+
48
+ bboxes = [[] for _ in range(1)]
49
+ for i in range(3):
50
+ batch_size, A1, S, _, _ = output[i].shape
51
+ anchor = config.SCALED_ANCHORS[i].to(config.DEVICE)
52
+ boxes_scale_i = cells_to_bboxes(
53
+ output[i].to(config.DEVICE), anchor, S=S, is_preds=True
54
+ )
55
+ for idx, (box) in enumerate(boxes_scale_i):
56
+ bboxes[idx] += box
57
+
58
+ nms_boxes = non_max_suppression(
59
+ bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint",
60
+ )
61
+ plot_img = draw_predictions(image, nms_boxes, class_labels=config.PASCAL_CLASSES)
62
 
63
+ return [plot_img]
64
+
65
+
66
+ def draw_predictions(image: np.ndarray, boxes: list[list], class_labels: list[str]) -> np.ndarray:
67
+ """Plots predicted bounding boxes on the image"""
68
+
69
+ colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels]
70
+
71
+ im = np.array(image)
72
+ height, width, _ = im.shape
73
+ bbox_thick = int(0.6 * (height + width) / 600)
74
+
75
+ # Create a Rectangle patch
76
+ for box in boxes:
77
+ assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height"
78
+ class_pred = box[0]
79
+ conf = box[1]
80
+ box = box[2:]
81
+ upper_left_x = box[0] - box[2] / 2
82
+ upper_left_y = box[1] - box[3] / 2
83
+
84
+ x1 = int(upper_left_x * width)
85
+ y1 = int(upper_left_y * height)
86
+
87
+ x2 = x1 + int(box[2] * width)
88
+ y2 = y1 + int(box[3] * height)
89
+
90
+ cv2.rectangle(
91
+ image,
92
+ (x1, y1), (x2, y2),
93
+ color=colors[int(class_pred)],
94
+ thickness=bbox_thick
95
+ )
96
+ text = f"{class_labels[int(class_pred)]}: {conf:.2f}"
97
+ t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0]
98
+ c3 = (x1 + t_size[0], y1 - t_size[1] - 3)
99
+
100
+ cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1)
101
+ cv2.putText(
102
+ image,
103
+ text,
104
+ (x1, y1 - 2),
105
+ cv2.FONT_HERSHEY_SIMPLEX,
106
+ 0.7,
107
+ (0, 0, 0),
108
+ bbox_thick // 2,
109
+ lineType=cv2.LINE_AA,
110
+ )
111
+
112
+ return image
113
+
114
+ demo = gr.Interface(
115
+ fn=yolo_predict,
116
+ inputs=[
117
+ gr.Image(shape=(config.IMAGE_SIZE,config.IMAGE_SIZE), label="Input Image"),
118
+ gr.Slider(0, 1, value=0.5, step=0.05, label="IOU Threshold"),
119
+ gr.Slider(0, 1, value=0.5, step=0.05, label="Threshold")
120
+ ],
121
+ outputs=gr.Gallery(rows=1, columns=1),
122
+ examples=[
123
+ ["examples/000001.jpg", 0.5, 0.5],
124
+ ["examples/000002.jpg", 0.5, 0.5],
125
+ ["examples/000003.jpg", 0.5, 0.5],
126
+ ["examples/000004.jpg", 0.5, 0.5],
127
+ ["examples/000005.jpg", 0.5, 0.5],
128
+ ["examples/000006.jpg", 0.5, 0.5],
129
+ ["examples/000007.jpg", 0.5, 0.5],
130
+ ["examples/000008.jpg", 0.5, 0.5],
131
+ ["examples/000009.jpg", 0.5, 0.5],
132
+ ["examples/000010.jpg", 0.5, 0.5]
133
  ]
134
+ )
135
+
136
+ demo.launch()