import torch import pandas as pd import numpy as np import gradio as gr from PIL import Image from torch.nn import functional as F from collections import OrderedDict from torchvision import transforms from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget from pytorch_lightning import LightningModule, Trainer, seed_everything import albumentations as A from albumentations.pytorch import ToTensorV2 import torchvision.transforms as T from model import YOLOv3 from train import YOLOTraining import config from utils import * import numpy as np import cv2 import albumentations as A from utils import * import random from albumentations.pytorch import ToTensorV2 model = YOLOv3(num_classes=config.NUM_CLASSES) model = YOLOTraining(model) model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')), strict=False) model.eval() def yolo_predict(image: np.ndarray, iou_thresh: float = 0.5, thresh: float = 0.5): transforms = A.Compose( [ A.LongestMaxSize(max_size=config.IMAGE_SIZE), A.PadIfNeeded( min_height=config.IMAGE_SIZE, min_width=config.IMAGE_SIZE, border_mode=cv2.BORDER_CONSTANT ), A.Normalize(mean=[0, 0, 0], std=[1, 1, 1], max_pixel_value=255,), ToTensorV2(), ], ) with torch.no_grad(): transformed_image = transforms(image=image)["image"].unsqueeze(0).to(config.DEVICE) output = model(transformed_image) bboxes = [[] for _ in range(1)] for i in range(3): batch_size, A1, S, _, _ = output[i].shape anchor = config.SCALED_ANCHORS[i].to(config.DEVICE) boxes_scale_i = cells_to_bboxes( output[i].to(config.DEVICE), anchor, S=S, is_preds=True ) for idx, (box) in enumerate(boxes_scale_i): bboxes[idx] += box nms_boxes = non_max_suppression( bboxes[0], iou_threshold=iou_thresh, threshold=thresh, box_format="midpoint", ) plot_img = draw_predictions(image, nms_boxes, class_labels=config.PASCAL_CLASSES) return [plot_img] def draw_predictions(image: np.ndarray, boxes: list[list], class_labels: list[str]) -> np.ndarray: """Plots predicted bounding boxes on the image""" colors = [[random.randint(0, 255) for _ in range(3)] for name in class_labels] im = np.array(image) height, width, _ = im.shape bbox_thick = int(0.6 * (height + width) / 600) # Create a Rectangle patch for box in boxes: assert len(box) == 6, "box should contain class pred, confidence, x, y, width, height" class_pred = box[0] conf = box[1] box = box[2:] upper_left_x = box[0] - box[2] / 2 upper_left_y = box[1] - box[3] / 2 x1 = int(upper_left_x * width) y1 = int(upper_left_y * height) x2 = x1 + int(box[2] * width) y2 = y1 + int(box[3] * height) cv2.rectangle( image, (x1, y1), (x2, y2), color=colors[int(class_pred)], thickness=bbox_thick ) text = f"{class_labels[int(class_pred)]}: {conf:.2f}" t_size = cv2.getTextSize(text, 0, 0.7, thickness=bbox_thick // 2)[0] c3 = (x1 + t_size[0], y1 - t_size[1] - 3) cv2.rectangle(image, (x1, y1), c3, colors[int(class_pred)], -1) cv2.putText( image, text, (x1, y1 - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), bbox_thick // 2, lineType=cv2.LINE_AA, ) return image demo = gr.Interface( fn=yolo_predict, inputs=[ gr.Image(shape=(config.IMAGE_SIZE,config.IMAGE_SIZE), label="Input Image"), gr.Slider(0, 1, value=0.5, step=0.05, label="IOU Threshold"), gr.Slider(0, 1, value=0.5, step=0.05, label="Threshold") ], outputs=gr.Gallery(rows=1, columns=1), examples=[ ["examples/000001.jpg", 0.5, 0.5], ["examples/000002.jpg", 0.5, 0.5], ["examples/000003.jpg", 0.5, 0.5], ["examples/000004.jpg", 0.5, 0.5], ["examples/000005.jpg", 0.5, 0.5], ["examples/000006.jpg", 0.5, 0.5], ["examples/000007.jpg", 0.5, 0.5], ["examples/000008.jpg", 0.5, 0.5], ["examples/000009.jpg", 0.5, 0.5], ["examples/000010.jpg", 0.5, 0.5] ] ) demo.launch()