Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
"""S22.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/1pq0UO46D0emoqF8rPuD4cUznmYVSMESO | |
""" | |
# Commented out IPython magic to ensure Python compatibility. | |
# %pip install lightning -q | |
import torch | |
torch.cuda.is_available() | |
import glob | |
import math | |
import sys | |
import time | |
from pathlib import Path | |
from typing import Optional, Tuple, Union | |
import lightning as L | |
from lightning.fabric.loggers import CSVLogger | |
from lightning.fabric.strategies import FSDPStrategy | |
from tsai_gpt.model import GPT, Block, Config | |
from tsai_gpt.packed_dataset import CombinedDataset, PackedDataset | |
from tsai_gpt.speed_monitor import SpeedMonitorBase, estimate_flops, measure_flops | |
from tsai_gpt.speed_monitor import SpeedMonitorFabric as SpeedMonitor | |
from tsai_gpt.utils import chunked_cross_entropy, get_default_supported_precision, num_parameters, load_checkpoint | |
import os | |
import pickle | |
from contextlib import nullcontext | |
from torch.utils.data import DataLoader | |
import torch.nn.functional as F | |
from tsai_gpt.tokenizer import Tokenizer | |
import gradio as gr | |
model_name = "pythia-160m" | |
name = "redpajama" | |
out_dir = Path("out") / name | |
hparams = {k: v for k, v in locals().items() if isinstance(v, (int, float, str)) and not k.startswith("_")} | |
logger = CSVLogger("out", name, flush_logs_every_n_steps=log_interval) | |
fabric = L.Fabric(devices=1, strategy='auto', precision=None, loggers=logger) | |
checkpoint_path = Path("out/redpajama/iter-023999-ckpt.pth") | |
config = Config.from_name(model_name) | |
model = GPT(config) | |
load_checkpoint(fabric, model, checkpoint_path) | |
#print(model.transformer.h[0].mlp.fc.weight) | |
def generate( model, config, idx, max_new_tokens, temperature=1.0, top_k=None): | |
""" | |
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete | |
the sequence max_new_tokens times, feeding the predictions back into the model each time. | |
Most likely you'll want to make sure to be in model.eval() mode of operation for this. | |
""" | |
idx = idx.unsqueeze(dim=0) | |
for _ in range(max_new_tokens): | |
# # if the sequence context is growing too long we must crop it at block_size | |
idx_cond = idx if idx.size(1) <= config.block_size else idx[ :,-config.block_size:] | |
# forward the model to get the logits for the index in the sequence | |
idx_cd = idx | |
logits = model(idx_cd) | |
# pluck the logits at the final step and scale by desired temperature | |
logits = logits[:, -1, :] / temperature | |
# optionally crop the logits to only the top k options | |
if top_k is not None: | |
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) | |
logits[logits < v[:, [-1]]] = -float('Inf') | |
# apply softmax to convert logits to (normalized) probabilities | |
probs = F.softmax(logits, dim=-1) | |
# sample from the distribution | |
idx_next = torch.multinomial(probs, num_samples=1) | |
# append sampled index to the running sequence and continue | |
idx = torch.cat((idx, idx_next), dim=1) | |
return idx | |
checkpoint_dir = Path('./checkpoints/meta-llama/Llama-2-7b-chat-hf') | |
token = Tokenizer(checkpoint_dir = checkpoint_dir) | |
def tsaigpt(start:str , model= model, max_new_tokens = 300, num_samples =2, tokeniser= token): | |
# ----------------------------------------------------------------------------- | |
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions | |
top_k = 200 # retain only the top_k most likely tokens, clamp others to have 0 probability | |
seed = 1337 | |
device = 'cpu' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc. | |
dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32' or 'bfloat16' or 'float16' | |
compile = False # use PyTorch 2.0 to compile the model to be faster | |
#exec(open('configurator.py').read()) # overrides from command line or config file | |
# ----------------------------------------------------------------------------- | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul | |
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast | |
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
model.eval() | |
model.to(device) | |
if compile: | |
model = torch.compile(model) # requires PyTorch 2.0 (optional) | |
start_ids = tokeniser.encode(start).to(device) | |
#x = torch.tensor(start_ids, dtype=torch.long, device=device).clone().detach() | |
# run generation | |
with torch.no_grad(): | |
with ctx: | |
y = generate(model =model, config =config , max_new_tokens = max_new_tokens, idx = start_ids ,temperature=1.0, top_k=None) | |
#print(decode(y[0].tolist())) | |
output = tokeniser.decode(y[0]) | |
return output | |
INTERFACE = gr.Interface(fn=tsaigpt, inputs=[gr.Textbox(label= "Prompt", value= 'All that glisters is not gold.'), | |
gr.Slider(minimum = 300, maximum = 500, value= 300, label= "Maximum number of tokens to be generated")] , | |
outputs=gr.Text(label= "Generated Text"), title="TSAI_GPT", | |
description="TSAIGPT is a transformer-based language model with only 0.16 billion parameters, trained on RedPajama 1T Sample.", | |
examples = [['We know what we are, but know not what we may be',300], | |
['Sweet are the uses of adversity which, like the toad, ugly and venomous, wears yet a precious jewel in his head',300],] | |
).launch(debug=True) |