import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, logging import gradio as gr model_name = "microsoft/phi-2" model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True ) model.config.use_cache = False tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) tokenizer.pad_token = tokenizer.eos_token # Loading adapter (trained LORA weights) # ckpt = '/content/drive/MyDrive/S27/results/checkpoint-500' # model.load_adapter(ckpt) adapter_path = 'checkpoint-500' model.load_adapter(adapter_path) def inference(prompt): pipe = pipeline(task="text-generation",model=model,tokenizer=tokenizer,max_length=200) result = pipe(f"[INST] {prompt} [/INST]") return result[0]['generated_text'] with gr.Blocks() as demo: gr.Markdown( """ # Phi2 trained on OpenAssistant/oasst1 dataset Start typing below to see the output. """) prompt = gr.Textbox(label="Prompt") output = gr.Textbox(label="Output Box") greet_btn = gr.Button("Generate") examples = gr.Examples(examples=[[prompt = 'Please write about Shakuntala Devi'], [prompt = 'Write a brief note on Indiana Jones']], cache_examples=False) greet_btn.click(fn=inference, inputs=prompt, outputs=output) demo.launch(debug=True)