Raumkommander commited on
Commit
9b1ccc9
·
1 Parent(s): 2b288f7

inital deployment1

Browse files
Files changed (3) hide show
  1. .DS_Store +0 -0
  2. .gitignore +1 -0
  3. app.py +57 -17
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ Real-Time-Latent-Consistency-Model/
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  import cv2
3
  import torch
4
  import numpy as np
5
- from diffusers import StableDiffusionPipeline
6
  from transformers import AutoProcessor, AutoModel, AutoTokenizer
7
  from PIL import Image
8
 
@@ -10,24 +10,64 @@ from PIL import Image
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
  ##realtime_pipe = StableDiffusionPipeline.from_pretrained("radames/Real-Time-Latent-Consistency-Model").to(device)
12
 
13
- # Load the model (optimized for inference)
14
- model_id = "radames/Real-Time-Latent-Consistency-Model"
15
 
16
- tokenizer = AutoTokenizer.from_pretrained(model_id)
 
 
 
 
 
 
17
 
18
- realtime_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
19
- realtime_pipe.to("cuda") # Use GPU for faster inference
20
 
21
-
22
- def process_frame(frame, prompt="A futuristic landscape"):
23
- """Process a single frame using the real-time latent consistency model."""
24
-
25
- # Convert frame to PIL image
26
- image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)).resize((512, 512))
27
-
28
- # Apply Real-Time Latent Consistency Model
29
- result = realtime_pipe(prompt=prompt, image=image, strength=0.5, guidance_scale=7.5).images[0]
30
- return np.array(result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  def video_stream(prompt):
33
  """Captures video feed from webcam and sends to the AI model."""
@@ -56,7 +96,7 @@ with gr.Blocks() as demo:
56
  prompt_input = gr.Textbox(label="Real-Time LCM Prompt", value="A futuristic landscape")
57
  start_button = gr.Button("Start Real-Time AI Enhancement")
58
 
59
- start_button.click(fn=video_stream, inputs=[prompt_input], outputs=[processed_image, canvas_output])
60
 
61
  demo.launch(share=True)
62
 
 
2
  import cv2
3
  import torch
4
  import numpy as np
5
+ from diffusers import StableDiffusionPipeline,AutoPipelineForImage2Image,AutoencoderTiny
6
  from transformers import AutoProcessor, AutoModel, AutoTokenizer
7
  from PIL import Image
8
 
 
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
  ##realtime_pipe = StableDiffusionPipeline.from_pretrained("radames/Real-Time-Latent-Consistency-Model").to(device)
12
 
13
+ # Load the model (optimized for inference)#
14
+ #model_id = "radames/Real-Time-Latent-Consistency-Model"
15
 
16
+ # model_id = "stabilityai/sd-turbo"
17
+ # AutoPipelineForImage2Image.from_pretrained(base_model)
18
+ #
19
+ # tokenizer = AutoTokenizer.from_pretrained(model_id)
20
+ #
21
+ # realtime_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
22
+ # realtime_pipe.to("cuda") # Use GPU for faster inference
23
 
 
 
24
 
25
+ #
26
+ #
27
+ # def predict(prompt, frame):
28
+ # generator = torch.manual_seed(params.seed)
29
+ # steps = params.steps
30
+ # strength = params.strength
31
+ # if int(steps * strength) < 1:
32
+ # steps = math.ceil(1 / max(0.10, strength))
33
+ #
34
+ # prompt = params.prompt
35
+ # prompt_embeds = None
36
+ #
37
+ # results = self.pipe(
38
+ # image=frame,
39
+ # prompt_embeds=prompt_embeds,
40
+ # prompt=prompt,
41
+ # negative_prompt=params.negative_prompt,
42
+ # generator=generator,
43
+ # strength=strength,
44
+ # num_inference_steps=steps,
45
+ # guidance_scale=1.1,
46
+ # width=params.width,
47
+ # height=params.height,
48
+ # output_type="pil",
49
+ # )
50
+ #
51
+ # nsfw_content_detected = (
52
+ # results.nsfw_content_detected[0]
53
+ # if "nsfw_content_detected" in results
54
+ # else False
55
+ # )
56
+ # if nsfw_content_detected:
57
+ # return None
58
+ # result_image = results.images[0]
59
+ #
60
+ # return result_image
61
+ #
62
+ # def process_frame(frame, prompt="A futuristic landscape"):
63
+ # """Process a single frame using the real-time latent consistency model."""
64
+ #
65
+ # # Convert frame to PIL image
66
+ # image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)).resize((512, 512))
67
+ #
68
+ # # Apply Real-Time Latent Consistency Model
69
+ # result = realtime_pipe(prompt=prompt, image=image, strength=0.5, guidance_scale=7.5).images[0]
70
+ # return np.array(result)
71
 
72
  def video_stream(prompt):
73
  """Captures video feed from webcam and sends to the AI model."""
 
96
  prompt_input = gr.Textbox(label="Real-Time LCM Prompt", value="A futuristic landscape")
97
  start_button = gr.Button("Start Real-Time AI Enhancement")
98
 
99
+ #start_button.click(fn=video_stream, inputs=[prompt_input], outputs=[processed_image, canvas_output])
100
 
101
  demo.launch(share=True)
102