|
import gradio as gr |
|
|
|
|
|
from chatbot import chatbot, model_inference, BOT_AVATAR, EXAMPLES, model_selector, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p |
|
from live_chat import videochat |
|
|
|
|
|
theme = gr.themes.Soft( |
|
primary_hue="blue", |
|
secondary_hue="orange", |
|
neutral_hue="gray", |
|
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'] |
|
).set( |
|
body_background_fill_dark="#111111", |
|
block_background_fill_dark="#111111", |
|
block_border_width="1px", |
|
block_title_background_fill_dark="#1e1c26", |
|
input_background_fill_dark="#292733", |
|
button_secondary_background_fill_dark="#24212b", |
|
border_color_primary_dark="#343140", |
|
background_fill_secondary_dark="#111111", |
|
color_accent_soft_dark="transparent" |
|
) |
|
|
|
import edge_tts |
|
import asyncio |
|
import tempfile |
|
import numpy as np |
|
import soxr |
|
from pydub import AudioSegment |
|
import torch |
|
import sentencepiece as spm |
|
import onnxruntime as ort |
|
from huggingface_hub import hf_hub_download, InferenceClient |
|
import requests |
|
from bs4 import BeautifulSoup |
|
import urllib |
|
import random |
|
|
|
|
|
_useragent_list = [ |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0', |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', |
|
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36', |
|
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36', |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62', |
|
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0' |
|
] |
|
|
|
def get_useragent(): |
|
"""Returns a random user agent from the list.""" |
|
return random.choice(_useragent_list) |
|
|
|
def extract_text_from_webpage(html_content): |
|
"""Extracts visible text from HTML content using BeautifulSoup.""" |
|
soup = BeautifulSoup(html_content, "html.parser") |
|
|
|
for tag in soup(["script", "style", "header", "footer", "nav"]): |
|
tag.extract() |
|
|
|
visible_text = soup.get_text(strip=True) |
|
return visible_text |
|
|
|
def search(term, num_results=1, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None): |
|
"""Performs a Google search and returns the results.""" |
|
escaped_term = urllib.parse.quote_plus(term) |
|
start = 0 |
|
all_results = [] |
|
|
|
|
|
while start < num_results: |
|
resp = requests.get( |
|
url="https://www.google.com/search", |
|
headers={"User-Agent": get_useragent()}, |
|
params={ |
|
"q": term, |
|
"num": num_results - start, |
|
"hl": lang, |
|
"start": start, |
|
"safe": safe, |
|
}, |
|
timeout=timeout, |
|
verify=ssl_verify, |
|
) |
|
resp.raise_for_status() |
|
|
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
result_block = soup.find_all("div", attrs={"class": "g"}) |
|
|
|
|
|
if not result_block: |
|
start += 1 |
|
continue |
|
|
|
|
|
for result in result_block: |
|
link = result.find("a", href=True) |
|
if link: |
|
link = link["href"] |
|
try: |
|
|
|
webpage = requests.get(link, headers={"User-Agent": get_useragent()}) |
|
webpage.raise_for_status() |
|
|
|
visible_text = extract_text_from_webpage(webpage.text) |
|
all_results.append({"link": link, "text": visible_text}) |
|
except requests.exceptions.RequestException as e: |
|
|
|
print(f"Error fetching or processing {link}: {e}") |
|
all_results.append({"link": link, "text": None}) |
|
else: |
|
all_results.append({"link": None, "text": None}) |
|
|
|
start += len(result_block) |
|
|
|
return all_results |
|
|
|
|
|
model_name = "neongeckocom/stt_en_citrinet_512_gamma_0_25" |
|
sample_rate = 16000 |
|
|
|
|
|
preprocessor = torch.jit.load(hf_hub_download(model_name, "preprocessor.ts", subfolder="onnx")) |
|
encoder = ort.InferenceSession(hf_hub_download(model_name, "model.onnx", subfolder="onnx")) |
|
tokenizer = spm.SentencePieceProcessor(hf_hub_download(model_name, "tokenizer.spm", subfolder="onnx")) |
|
|
|
|
|
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") |
|
system_instructions1 = "<s>[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" |
|
|
|
def resample(audio_fp32, sr): |
|
return soxr.resample(audio_fp32, sr, sample_rate) |
|
|
|
def to_float32(audio_buffer): |
|
return np.divide(audio_buffer, np.iinfo(audio_buffer.dtype).max, dtype=np.float32) |
|
|
|
def transcribe(audio_path): |
|
audio_file = AudioSegment.from_file(audio_path) |
|
sr = audio_file.frame_rate |
|
audio_buffer = np.array(audio_file.get_array_of_samples()) |
|
|
|
audio_fp32 = to_float32(audio_buffer) |
|
audio_16k = resample(audio_fp32, sr) |
|
|
|
input_signal = torch.tensor(audio_16k).unsqueeze(0) |
|
length = torch.tensor(len(audio_16k)).unsqueeze(0) |
|
processed_signal, _ = preprocessor.forward(input_signal=input_signal, length=length) |
|
|
|
logits = encoder.run(None, {'audio_signal': processed_signal.numpy(), 'length': length.numpy()})[0][0] |
|
|
|
blank_id = tokenizer.vocab_size() |
|
decoded_prediction = [p for p in logits.argmax(axis=1).tolist() if p != blank_id] |
|
text = tokenizer.decode_ids(decoded_prediction) |
|
|
|
return text |
|
|
|
def model(text, web_search): |
|
if web_search is True: |
|
"""Performs a web search, feeds the results to a language model, and returns the answer.""" |
|
web_results = search(text) |
|
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results]) |
|
formatted_prompt = system_instructions1 + text + "[WEB]" + str(web2) + "[OpenGPT 4o]" |
|
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False) |
|
return "".join([response.token.text for response in stream if response.token.text != "</s>"]) |
|
else: |
|
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]" |
|
stream = client1.text_generation(formatted_prompt, max_new_tokens=512, stream=True, details=True, return_full_text=False) |
|
return "".join([response.token.text for response in stream if response.token.text != "</s>"]) |
|
|
|
async def respond(audio, web_search): |
|
user = transcribe(audio) |
|
reply = model(user, web_search) |
|
communicate = edge_tts.Communicate(reply) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: |
|
tmp_path = tmp_file.name |
|
await communicate.save(tmp_path) |
|
return tmp_path |
|
|
|
with gr.Blocks() as voice: |
|
with gr.Row(): |
|
web_search = gr.Checkbox(label="Web Search", value=False) |
|
input = gr.Audio(label="User Input", sources="microphone", type="filepath") |
|
output = gr.Audio(label="AI", autoplay=True) |
|
gr.Interface(fn=respond, inputs=[input, web_search], outputs=[output], live=True) |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks( |
|
fill_height=True, |
|
css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""", |
|
) as chat: |
|
gr.Markdown("### Image Chat, Image Generation and Normal Chat") |
|
with gr.Row(elem_id="model_selector_row"): |
|
|
|
pass |
|
|
|
decoding_strategy.change( |
|
fn=lambda selection: gr.Slider( |
|
visible=( |
|
selection |
|
in [ |
|
"contrastive_sampling", |
|
"beam_sampling", |
|
"Top P Sampling", |
|
"sampling_top_k", |
|
] |
|
) |
|
), |
|
inputs=decoding_strategy, |
|
outputs=temperature, |
|
) |
|
decoding_strategy.change( |
|
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])), |
|
inputs=decoding_strategy, |
|
outputs=top_p, |
|
) |
|
gr.ChatInterface( |
|
fn=model_inference, |
|
chatbot=chatbot, |
|
examples=EXAMPLES, |
|
multimodal=True, |
|
cache_examples=False, |
|
additional_inputs=[ |
|
model_selector, |
|
decoding_strategy, |
|
temperature, |
|
max_new_tokens, |
|
repetition_penalty, |
|
top_p, |
|
gr.Checkbox(label="Web Search", value=True), |
|
], |
|
) |
|
|
|
|
|
with gr.Blocks() as livechat: |
|
gr.Interface( |
|
fn=videochat, |
|
inputs=[gr.Image(type="pil",sources="webcam", label="Upload Image"), gr.Textbox(label="Prompt", value="what he is doing")], |
|
outputs=gr.Textbox(label="Answer") |
|
) |
|
|
|
|
|
with gr.Blocks() as instant: |
|
gr.HTML("<iframe src='https://kingnish-sdxl-flash.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>") |
|
|
|
with gr.Blocks() as dalle: |
|
gr.HTML("<iframe src='https://kingnish-image-gen-pro.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>") |
|
|
|
with gr.Blocks() as playground: |
|
gr.HTML("<iframe src='https://fluently-fluently-playground.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>") |
|
|
|
with gr.Blocks() as image: |
|
gr.Markdown("""### More models are coming""") |
|
gr.TabbedInterface([ instant, dalle, playground], ['Instant🖼️','Powerful🖼️', 'Playground🖼']) |
|
|
|
with gr.Blocks() as instant2: |
|
gr.HTML("<iframe src='https://kingnish-instant-video.hf.space' width='100%' height='3000px' style='border-radius: 8px;'></iframe>") |
|
|
|
with gr.Blocks() as video: |
|
gr.Markdown("""More Models are coming""") |
|
gr.TabbedInterface([ instant2], ['Instant🎥']) |
|
|
|
|
|
with gr.Blocks(theme=theme, title="OpenGPT 4o DEMO") as demo: |
|
gr.Markdown("# OpenGPT 4o") |
|
gr.TabbedInterface([chat, voice, livechat, image, video], ['💬 SuperChat','🗣️ Voice Chat','📸 Live Chat', '🖼️ Image Engine', '🎥 Video Engine']) |
|
|
|
demo.queue(max_size=300) |
|
demo.launch() |