Spaces:
Running
Running
# Convert Japanese text to phonemes which is | |
# compatible with Julius https://github.com/julius-speech/segmentation-kit | |
import re | |
import unicodedata | |
from transformers import AutoTokenizer | |
from . import punctuation, symbols | |
from num2words import num2words | |
import pyopenjtalk | |
import jaconv | |
def kata2phoneme(text: str) -> str: | |
"""Convert katakana text to phonemes.""" | |
text = text.strip() | |
if text == "ー": | |
return ["ー"] | |
elif text.startswith("ー"): | |
return ["ー"] + kata2phoneme(text[1:]) | |
res = [] | |
prev = None | |
while text: | |
if re.match(_MARKS, text): | |
res.append(text) | |
text = text[1:] | |
continue | |
if text.startswith("ー"): | |
if prev: | |
res.append(prev[-1]) | |
text = text[1:] | |
continue | |
res += pyopenjtalk.g2p(text).lower().replace("cl", "q").split(" ") | |
break | |
# res = _COLON_RX.sub(":", res) | |
return res | |
def hira2kata(text: str) -> str: | |
return jaconv.hira2kata(text) | |
_SYMBOL_TOKENS = set(list("・、。?!")) | |
_NO_YOMI_TOKENS = set(list("「」『』―()[][]")) | |
_MARKS = re.compile( | |
r"[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]" | |
) | |
def text2kata(text: str) -> str: | |
parsed = pyopenjtalk.run_frontend(text) | |
res = [] | |
for parts in parsed: | |
word, yomi = replace_punctuation(parts["string"]), parts["pron"].replace( | |
"’", "" | |
) | |
if yomi: | |
if re.match(_MARKS, yomi): | |
if len(word) > 1: | |
word = [replace_punctuation(i) for i in list(word)] | |
yomi = word | |
res += yomi | |
sep += word | |
continue | |
elif word not in rep_map.keys() and word not in rep_map.values(): | |
word = "," | |
yomi = word | |
res.append(yomi) | |
else: | |
if word in _SYMBOL_TOKENS: | |
res.append(word) | |
elif word in ("っ", "ッ"): | |
res.append("ッ") | |
elif word in _NO_YOMI_TOKENS: | |
pass | |
else: | |
res.append(word) | |
return hira2kata("".join(res)) | |
def text2sep_kata(text: str) -> (list, list): | |
parsed = pyopenjtalk.run_frontend(text) | |
res = [] | |
sep = [] | |
for parts in parsed: | |
word, yomi = replace_punctuation(parts["string"]), parts["pron"].replace( | |
"’", "" | |
) | |
if yomi: | |
if re.match(_MARKS, yomi): | |
if len(word) > 1: | |
word = [replace_punctuation(i) for i in list(word)] | |
yomi = word | |
res += yomi | |
sep += word | |
continue | |
elif word not in rep_map.keys() and word not in rep_map.values(): | |
word = "," | |
yomi = word | |
res.append(yomi) | |
else: | |
if word in _SYMBOL_TOKENS: | |
res.append(word) | |
elif word in ("っ", "ッ"): | |
res.append("ッ") | |
elif word in _NO_YOMI_TOKENS: | |
pass | |
else: | |
res.append(word) | |
sep.append(word) | |
return sep, [hira2kata(i) for i in res], get_accent(parsed) | |
def get_accent(parsed): | |
labels = pyopenjtalk.make_label(parsed) | |
phonemes = [] | |
accents = [] | |
for n, label in enumerate(labels): | |
phoneme = re.search(r"\-([^\+]*)\+", label).group(1) | |
if phoneme not in ["sil", "pau"]: | |
phonemes.append(phoneme.replace("cl", "q").lower()) | |
else: | |
continue | |
a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1)) | |
a2 = int(re.search(r"\+(\d+)\+", label).group(1)) | |
if re.search(r"\-([^\+]*)\+", labels[n + 1]).group(1) in ["sil", "pau"]: | |
a2_next = -1 | |
else: | |
a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1)) | |
# Falling | |
if a1 == 0 and a2_next == a2 + 1: | |
accents.append(-1) | |
# Rising | |
elif a2 == 1 and a2_next == 2: | |
accents.append(1) | |
else: | |
accents.append(0) | |
return list(zip(phonemes, accents)) | |
_ALPHASYMBOL_YOMI = { | |
"#": "シャープ", | |
"%": "パーセント", | |
"&": "アンド", | |
"+": "プラス", | |
"-": "マイナス", | |
":": "コロン", | |
";": "セミコロン", | |
"<": "小なり", | |
"=": "イコール", | |
">": "大なり", | |
"@": "アット", | |
"a": "エー", | |
"b": "ビー", | |
"c": "シー", | |
"d": "ディー", | |
"e": "イー", | |
"f": "エフ", | |
"g": "ジー", | |
"h": "エイチ", | |
"i": "アイ", | |
"j": "ジェー", | |
"k": "ケー", | |
"l": "エル", | |
"m": "エム", | |
"n": "エヌ", | |
"o": "オー", | |
"p": "ピー", | |
"q": "キュー", | |
"r": "アール", | |
"s": "エス", | |
"t": "ティー", | |
"u": "ユー", | |
"v": "ブイ", | |
"w": "ダブリュー", | |
"x": "エックス", | |
"y": "ワイ", | |
"z": "ゼット", | |
"α": "アルファ", | |
"β": "ベータ", | |
"γ": "ガンマ", | |
"δ": "デルタ", | |
"ε": "イプシロン", | |
"ζ": "ゼータ", | |
"η": "イータ", | |
"θ": "シータ", | |
"ι": "イオタ", | |
"κ": "カッパ", | |
"λ": "ラムダ", | |
"μ": "ミュー", | |
"ν": "ニュー", | |
"ξ": "クサイ", | |
"ο": "オミクロン", | |
"π": "パイ", | |
"ρ": "ロー", | |
"σ": "シグマ", | |
"τ": "タウ", | |
"υ": "ウプシロン", | |
"φ": "ファイ", | |
"χ": "カイ", | |
"ψ": "プサイ", | |
"ω": "オメガ", | |
} | |
_NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+") | |
_CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"} | |
_CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])") | |
_NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?") | |
def japanese_convert_numbers_to_words(text: str) -> str: | |
res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text) | |
res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res) | |
res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res) | |
return res | |
def japanese_convert_alpha_symbols_to_words(text: str) -> str: | |
return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()]) | |
def japanese_text_to_phonemes(text: str) -> str: | |
"""Convert Japanese text to phonemes.""" | |
res = unicodedata.normalize("NFKC", text) | |
res = japanese_convert_numbers_to_words(res) | |
# res = japanese_convert_alpha_symbols_to_words(res) | |
res = text2kata(res) | |
res = kata2phoneme(res) | |
return res | |
def is_japanese_character(char): | |
# 定义日语文字系统的 Unicode 范围 | |
japanese_ranges = [ | |
(0x3040, 0x309F), # 平假名 | |
(0x30A0, 0x30FF), # 片假名 | |
(0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs) | |
(0x3400, 0x4DBF), # 汉字扩展 A | |
(0x20000, 0x2A6DF), # 汉字扩展 B | |
# 可以根据需要添加其他汉字扩展范围 | |
] | |
# 将字符的 Unicode 编码转换为整数 | |
char_code = ord(char) | |
# 检查字符是否在任何一个日语范围内 | |
for start, end in japanese_ranges: | |
if start <= char_code <= end: | |
return True | |
return False | |
rep_map = { | |
":": ",", | |
";": ",", | |
",": ",", | |
"。": ".", | |
"!": "!", | |
"?": "?", | |
"\n": ".", | |
".": ".", | |
"...": "…", | |
"···": "…", | |
"・・・": "…", | |
"·": ",", | |
"・": ",", | |
"、": ",", | |
"$": ".", | |
"“": "'", | |
"”": "'", | |
"‘": "'", | |
"’": "'", | |
"(": "'", | |
")": "'", | |
"(": "'", | |
")": "'", | |
"《": "'", | |
"》": "'", | |
"【": "'", | |
"】": "'", | |
"[": "'", | |
"]": "'", | |
"—": "-", | |
"−": "-", | |
"~": "-", | |
"~": "-", | |
"「": "'", | |
"」": "'", | |
} | |
def replace_punctuation(text): | |
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys())) | |
replaced_text = pattern.sub(lambda x: rep_map[x.group()], text) | |
replaced_text = re.sub( | |
r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005" | |
+ "".join(punctuation) | |
+ r"]+", | |
"", | |
replaced_text, | |
) | |
return replaced_text | |
def text_normalize(text): | |
res = unicodedata.normalize("NFKC", text) | |
res = japanese_convert_numbers_to_words(res) | |
# res = "".join([i for i in res if is_japanese_character(i)]) | |
res = replace_punctuation(res) | |
return res | |
def distribute_phone(n_phone, n_word): | |
phones_per_word = [0] * n_word | |
for task in range(n_phone): | |
min_tasks = min(phones_per_word) | |
min_index = phones_per_word.index(min_tasks) | |
phones_per_word[min_index] += 1 | |
return phones_per_word | |
def handle_long(sep_phonemes): | |
for i in range(len(sep_phonemes)): | |
if sep_phonemes[i][0] == "ー": | |
sep_phonemes[i][0] = sep_phonemes[i - 1][-1] | |
if "ー" in sep_phonemes[i]: | |
for j in range(len(sep_phonemes[i])): | |
if sep_phonemes[i][j] == "ー": | |
sep_phonemes[i][j] = sep_phonemes[i][j - 1][-1] | |
return sep_phonemes | |
tokenizer = AutoTokenizer.from_pretrained("./bert/deberta-v2-large-japanese") | |
def align_tones(phones, tones): | |
res = [] | |
for pho in phones: | |
temp = [0] * len(pho) | |
for idx, p in enumerate(pho): | |
if len(tones) == 0: | |
break | |
if p == tones[0][0]: | |
temp[idx] = tones[0][1] | |
if idx > 0: | |
temp[idx] += temp[idx - 1] | |
tones.pop(0) | |
temp = [0] + temp | |
temp = temp[:-1] | |
if -1 in temp: | |
temp = [i + 1 for i in temp] | |
res.append(temp) | |
res = [i for j in res for i in j] | |
assert not any([i < 0 for i in res]) and not any([i > 1 for i in res]) | |
return res | |
def g2p(norm_text): | |
sep_text, sep_kata, acc = text2sep_kata(norm_text) | |
sep_tokenized = [tokenizer.tokenize(i) for i in sep_text] | |
sep_phonemes = handle_long([kata2phoneme(i) for i in sep_kata]) | |
# 异常处理,MeCab不认识的词的话会一路传到这里来,然后炸掉。目前来看只有那些超级稀有的生僻词会出现这种情况 | |
for i in sep_phonemes: | |
for j in i: | |
assert j in symbols, (sep_text, sep_kata, sep_phonemes) | |
tones = align_tones(sep_phonemes, acc) | |
word2ph = [] | |
for token, phoneme in zip(sep_tokenized, sep_phonemes): | |
phone_len = len(phoneme) | |
word_len = len(token) | |
aaa = distribute_phone(phone_len, word_len) | |
word2ph += aaa | |
phones = ["_"] + [j for i in sep_phonemes for j in i] + ["_"] | |
tones = [0] + tones + [0] | |
word2ph = [1] + word2ph + [1] | |
assert len(phones) == len(tones) | |
return phones, tones, word2ph | |
if __name__ == "__main__": | |
tokenizer = AutoTokenizer.from_pretrained("./bert/deberta-v2-large-japanese") | |
text = "hello,こんにちは、世界ー!……" | |
from text.japanese_bert import get_bert_feature | |
text = text_normalize(text) | |
print(text) | |
phones, tones, word2ph = g2p(text) | |
bert = get_bert_feature(text, word2ph) | |
print(phones, tones, word2ph, bert.shape) | |