Ron0420's picture
Upload app.py
abd7b7e
raw
history blame
1.94 kB
import gradio as gr
import cv2
from mtcnn.mtcnn import MTCNN
import tensorflow as tf
import tensorflow_addons
import numpy as np
detector = MTCNN()
model = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-B0")
def deepfakespredict(input_img):
face = detector.detect_faces(input_img)
text =""
if len(face) > 0:
x, y, width, height = face[0]['box']
x2, y2 = x + width, y + height
cv2.rectangle(input_img, (x, y), (x2, y2), (0, 255, 0), 2)
face_image = input_img[y:y2, x:x2]
face_image2 = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
face_image3 = cv2.resize(face_image2, (224, 224))
face_image4 = face_image3/255
pred = model.predict(np.expand_dims(face_image4, axis=0))[0]
if pred[1] >= 0.6:
text = "The image is fake."
elif pred[0] >= 0.6:
text = "The image is real."
else:
text = "The image might be real or fake."
# if pred[1] >= 0.5:
# text = "The image is fake."
# else:
# text = "The image is real."
else:
text = "Face is not detected in the image."
return pred, text, input_img
title="EfficientNetV2 Deepfakes Image Detector"
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. To use it, simply upload your image, or click one of the examples to load them."
examples = [
['fake-86.jpg'],
['fake-239.jpg'],
['fake-254.jpg'],
['fake-1266.jpg'],
['fake-2225.jpg']
]
demo = gr.Interface(deepfakespredict,
inputs = ["image"],
outputs=["text","text","image"],
title=title,
description=description,
examples=examples
)
demo.launch()