Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -15,14 +15,28 @@ zip_ref = zipfile.ZipFile(local_zip, 'r')
|
|
15 |
zip_ref.extractall('FINAL-EFFICIENTNETV2-B0')
|
16 |
zip_ref.close()
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
detector = MTCNN()
|
21 |
-
model = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-B0")
|
22 |
-
|
23 |
-
face = detector.detect_faces(input_img)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
text =""
|
|
|
26 |
|
27 |
if len(face) > 0:
|
28 |
x, y, width, height = face[0]['box']
|
@@ -43,24 +57,19 @@ def deepfakespredict(input_img):
|
|
43 |
text = "The image is real."
|
44 |
else:
|
45 |
text = "The image might be real or fake."
|
46 |
-
|
47 |
-
# if pred[1] >= 0.5:
|
48 |
-
# text = "The image is fake."
|
49 |
-
# else:
|
50 |
-
# text = "The image is real."
|
51 |
-
|
52 |
else:
|
53 |
text = "Face is not detected in the image."
|
54 |
|
55 |
-
return
|
56 |
|
57 |
|
58 |
title="EfficientNetV2 Deepfakes Image Detector"
|
59 |
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. To use it, simply upload your image, or click one of the examples to load them."
|
60 |
examples = []
|
61 |
gr.Interface(deepfakespredict,
|
62 |
-
inputs = ["image"],
|
63 |
-
outputs=["text","
|
64 |
title=title,
|
65 |
description=description
|
66 |
|
|
|
15 |
zip_ref.extractall('FINAL-EFFICIENTNETV2-B0')
|
16 |
zip_ref.close()
|
17 |
|
18 |
+
local_zip = "FINAL-EFFICIENTNETV2-S.zip"
|
19 |
+
zip_ref = zipfile.ZipFile(local_zip, 'r')
|
20 |
+
zip_ref.extractall('FINAL-EFFICIENTNETV2-S')
|
21 |
+
zip_ref.close()
|
22 |
+
|
23 |
+
model_b0 = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-B0")
|
24 |
+
model_s = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-S")
|
25 |
+
|
26 |
+
detector = MTCNN()
|
27 |
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
def deepfakespredict(input_img, select_model):
|
30 |
+
|
31 |
+
tf.keras.backend.clear_session()
|
32 |
+
|
33 |
+
if select_model = "EfficientNetV2-B0":
|
34 |
+
model = model_b0
|
35 |
+
elif select_model = "EfficientNetV2-B0":
|
36 |
+
model = model_s
|
37 |
+
|
38 |
text =""
|
39 |
+
face = detector.detect_faces(input_img)
|
40 |
|
41 |
if len(face) > 0:
|
42 |
x, y, width, height = face[0]['box']
|
|
|
57 |
text = "The image is real."
|
58 |
else:
|
59 |
text = "The image might be real or fake."
|
60 |
+
|
|
|
|
|
|
|
|
|
|
|
61 |
else:
|
62 |
text = "Face is not detected in the image."
|
63 |
|
64 |
+
return text, input_img, {labels[i]: float(pred[i]) for i in range(2)}
|
65 |
|
66 |
|
67 |
title="EfficientNetV2 Deepfakes Image Detector"
|
68 |
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. To use it, simply upload your image, or click one of the examples to load them."
|
69 |
examples = []
|
70 |
gr.Interface(deepfakespredict,
|
71 |
+
inputs = [gr.inputs.Radio(["EfficientNetV2-B0", "EfficientNetV2-S"], label = "Select model:"), "image"],
|
72 |
+
outputs=["text", gr.outputs.Image(type="pil", label="Detected face"), gr.outputs.Label(num_top_classes=None, type="auto", label="Confidence")],
|
73 |
title=title,
|
74 |
description=description
|
75 |
|