Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,92 +1,92 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
import cv2
|
4 |
-
from mtcnn.mtcnn import MTCNN
|
5 |
-
import tensorflow as tf
|
6 |
-
import tensorflow_addons
|
7 |
-
import numpy as np
|
8 |
-
|
9 |
-
import os
|
10 |
-
import zipfile
|
11 |
-
|
12 |
-
local_zip = "FINAL-EFFICIENTNETV2-B0.zip"
|
13 |
-
zip_ref = zipfile.ZipFile(local_zip, 'r')
|
14 |
-
zip_ref.extractall('FINAL-EFFICIENTNETV2-B0')
|
15 |
-
zip_ref.close()
|
16 |
-
|
17 |
-
model = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-B0")
|
18 |
-
|
19 |
-
detector = MTCNN()
|
20 |
-
|
21 |
-
def deepfakespredict(input_img ):
|
22 |
-
|
23 |
-
labels = ['real', 'fake']
|
24 |
-
pred = [0, 0]
|
25 |
-
text =""
|
26 |
-
text2 =""
|
27 |
-
|
28 |
-
face = detector.detect_faces(input_img)
|
29 |
-
|
30 |
-
if len(face) > 0:
|
31 |
-
x, y, width, height = face[0]['box']
|
32 |
-
x2, y2 = x + width, y + height
|
33 |
-
|
34 |
-
cv2.rectangle(input_img, (x, y), (x2, y2), (0, 255, 0), 2)
|
35 |
-
|
36 |
-
face_image = input_img[y:y2, x:x2]
|
37 |
-
face_image2 = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
|
38 |
-
face_image3 = cv2.resize(face_image2, (224, 224))
|
39 |
-
face_image4 = face_image3/255
|
40 |
-
|
41 |
-
pred = model.predict(np.expand_dims(face_image4, axis=0))[0]
|
42 |
-
|
43 |
-
if pred[1] >= 0.6:
|
44 |
-
text = "The image is FAKE."
|
45 |
-
elif pred[0] >= 0.6:
|
46 |
-
text = "The image is REAL."
|
47 |
-
else:
|
48 |
-
text = "The image may be REAL or FAKE."
|
49 |
-
|
50 |
-
else:
|
51 |
-
text = "Face is not detected in the image."
|
52 |
-
|
53 |
-
text2 = "REAL: " + str(np.round(pred[0]*100, 2)) + "%, FAKE: " + str(np.round(pred[1]*100, 2)) + "%"
|
54 |
-
|
55 |
-
return input_img, text, text2, {labels[i]: float(pred[i]) for i in range(2)}
|
56 |
-
|
57 |
-
|
58 |
-
title="EfficientNetV2 Deepfakes Image Detector"
|
59 |
-
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. \
|
60 |
-
To use it, simply upload your image, or click one of the examples to load them. \
|
61 |
-
This demo and model represent the Final Year Project titled \"Achieving Face Swapped Deepfakes Detection Using EfficientNetV2\" by a CS undergraduate Lee Sheng Yeh. \
|
62 |
-
The examples were extracted from Celeb-DF(V2)(Li et al, 2020) and FaceForensics++(Rossler et al., 2019). Full reference
|
63 |
-
The examples are used under fair use to demo the working of the model only. If any copyright is infringed, please contact the researcher via this email: tp054565@mail.apu.edu.my
|
64 |
-
"
|
65 |
-
|
66 |
-
examples = [
|
67 |
-
['Fake-1.png'],
|
68 |
-
['Fake-2.png'],
|
69 |
-
['Fake-3.png'],
|
70 |
-
['Fake-4.png'],
|
71 |
-
['Fake-5.png'],
|
72 |
-
|
73 |
-
['Real-1.png'],
|
74 |
-
['Real-2.png'],
|
75 |
-
['Real-3.png'],
|
76 |
-
['Real-4.png'],
|
77 |
-
['Real-5.png']
|
78 |
-
|
79 |
-
]
|
80 |
-
|
81 |
-
|
82 |
-
gr.Interface(deepfakespredict,
|
83 |
-
inputs = ["image"],
|
84 |
-
outputs=[gr.outputs.Image(type="pil", label="Detected face"),
|
85 |
-
"text",
|
86 |
-
"text",
|
87 |
-
gr.outputs.Label(num_top_classes=None, type="auto", label="Confidence")],
|
88 |
-
title=title,
|
89 |
-
description=description,
|
90 |
-
examples = examples,
|
91 |
-
examples_per_page = 5
|
92 |
).launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
from mtcnn.mtcnn import MTCNN
|
5 |
+
import tensorflow as tf
|
6 |
+
import tensorflow_addons
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
import os
|
10 |
+
import zipfile
|
11 |
+
|
12 |
+
local_zip = "FINAL-EFFICIENTNETV2-B0.zip"
|
13 |
+
zip_ref = zipfile.ZipFile(local_zip, 'r')
|
14 |
+
zip_ref.extractall('FINAL-EFFICIENTNETV2-B0')
|
15 |
+
zip_ref.close()
|
16 |
+
|
17 |
+
model = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-B0")
|
18 |
+
|
19 |
+
detector = MTCNN()
|
20 |
+
|
21 |
+
def deepfakespredict(input_img ):
|
22 |
+
|
23 |
+
labels = ['real', 'fake']
|
24 |
+
pred = [0, 0]
|
25 |
+
text =""
|
26 |
+
text2 =""
|
27 |
+
|
28 |
+
face = detector.detect_faces(input_img)
|
29 |
+
|
30 |
+
if len(face) > 0:
|
31 |
+
x, y, width, height = face[0]['box']
|
32 |
+
x2, y2 = x + width, y + height
|
33 |
+
|
34 |
+
cv2.rectangle(input_img, (x, y), (x2, y2), (0, 255, 0), 2)
|
35 |
+
|
36 |
+
face_image = input_img[y:y2, x:x2]
|
37 |
+
face_image2 = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)
|
38 |
+
face_image3 = cv2.resize(face_image2, (224, 224))
|
39 |
+
face_image4 = face_image3/255
|
40 |
+
|
41 |
+
pred = model.predict(np.expand_dims(face_image4, axis=0))[0]
|
42 |
+
|
43 |
+
if pred[1] >= 0.6:
|
44 |
+
text = "The image is FAKE."
|
45 |
+
elif pred[0] >= 0.6:
|
46 |
+
text = "The image is REAL."
|
47 |
+
else:
|
48 |
+
text = "The image may be REAL or FAKE."
|
49 |
+
|
50 |
+
else:
|
51 |
+
text = "Face is not detected in the image."
|
52 |
+
|
53 |
+
text2 = "REAL: " + str(np.round(pred[0]*100, 2)) + "%, FAKE: " + str(np.round(pred[1]*100, 2)) + "%"
|
54 |
+
|
55 |
+
return input_img, text, text2, {labels[i]: float(pred[i]) for i in range(2)}
|
56 |
+
|
57 |
+
|
58 |
+
title="EfficientNetV2 Deepfakes Image Detector"
|
59 |
+
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. \
|
60 |
+
To use it, simply upload your image, or click one of the examples to load them. \
|
61 |
+
This demo and model represent the Final Year Project titled \"Achieving Face Swapped Deepfakes Detection Using EfficientNetV2\" by a CS undergraduate Lee Sheng Yeh. \
|
62 |
+
The examples were extracted from Celeb-DF(V2)(Li et al, 2020) and FaceForensics++(Rossler et al., 2019). Full reference detail is available in \"references.txt.\" \
|
63 |
+
The examples are used under fair use to demo the working of the model only. If any copyright is infringed, please contact the researcher via this email: tp054565@mail.apu.edu.my.\
|
64 |
+
"
|
65 |
+
|
66 |
+
examples = [
|
67 |
+
['Fake-1.png'],
|
68 |
+
['Fake-2.png'],
|
69 |
+
['Fake-3.png'],
|
70 |
+
['Fake-4.png'],
|
71 |
+
['Fake-5.png'],
|
72 |
+
|
73 |
+
['Real-1.png'],
|
74 |
+
['Real-2.png'],
|
75 |
+
['Real-3.png'],
|
76 |
+
['Real-4.png'],
|
77 |
+
['Real-5.png']
|
78 |
+
|
79 |
+
]
|
80 |
+
|
81 |
+
|
82 |
+
gr.Interface(deepfakespredict,
|
83 |
+
inputs = ["image"],
|
84 |
+
outputs=[gr.outputs.Image(type="pil", label="Detected face"),
|
85 |
+
"text",
|
86 |
+
"text",
|
87 |
+
gr.outputs.Label(num_top_classes=None, type="auto", label="Confidence")],
|
88 |
+
title=title,
|
89 |
+
description=description,
|
90 |
+
examples = examples,
|
91 |
+
examples_per_page = 5
|
92 |
).launch()
|