Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ model_s = tf.keras.models.load_model("FINAL-EFFICIENTNETV2-S")
|
|
26 |
detector = MTCNN()
|
27 |
|
28 |
|
29 |
-
def deepfakespredict(
|
30 |
|
31 |
tf.keras.backend.clear_session()
|
32 |
|
@@ -66,11 +66,27 @@ def deepfakespredict(input_img, select_model):
|
|
66 |
|
67 |
title="EfficientNetV2 Deepfakes Image Detector"
|
68 |
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. To use it, simply upload your image, or click one of the examples to load them."
|
69 |
-
examples = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
gr.Interface(deepfakespredict,
|
71 |
inputs = [gr.inputs.Radio(["EfficientNetV2-B0", "EfficientNetV2-S"], label = "Select model:"), "image"],
|
72 |
outputs=["text", gr.outputs.Image(type="pil", label="Detected face"), gr.outputs.Label(num_top_classes=None, type="auto", label="Confidence")],
|
73 |
title=title,
|
74 |
-
description=description
|
75 |
-
|
76 |
).launch()
|
|
|
26 |
detector = MTCNN()
|
27 |
|
28 |
|
29 |
+
def deepfakespredict(select_model, input_img ):
|
30 |
|
31 |
tf.keras.backend.clear_session()
|
32 |
|
|
|
66 |
|
67 |
title="EfficientNetV2 Deepfakes Image Detector"
|
68 |
description="This is a demo implementation of EfficientNetV2 Deepfakes Image Detector. To use it, simply upload your image, or click one of the examples to load them."
|
69 |
+
examples = [
|
70 |
+
[
|
71 |
+
['deepfakes-test-images/Fake-1.jpg'],
|
72 |
+
['deepfakes-test-images/Fake-2.jpg'],
|
73 |
+
['deepfakes-test-images/Fake-3.jpg'],
|
74 |
+
['deepfakes-test-images/Fake-4.jpg'],
|
75 |
+
['deepfakes-test-images/Fake-5.jpg']
|
76 |
+
],
|
77 |
+
[
|
78 |
+
['deepfakes-test-images/Real-1.jpg'],
|
79 |
+
['deepfakes-test-images/Real-2.jpg'],
|
80 |
+
['deepfakes-test-images/Real-3.jpg'],
|
81 |
+
['deepfakes-test-images/Real-4.jpg'],
|
82 |
+
['deepfakes-test-images/Real-5.jpg'],
|
83 |
+
]
|
84 |
+
]
|
85 |
+
|
86 |
gr.Interface(deepfakespredict,
|
87 |
inputs = [gr.inputs.Radio(["EfficientNetV2-B0", "EfficientNetV2-S"], label = "Select model:"), "image"],
|
88 |
outputs=["text", gr.outputs.Image(type="pil", label="Detected face"), gr.outputs.Label(num_top_classes=None, type="auto", label="Confidence")],
|
89 |
title=title,
|
90 |
+
description=description,
|
91 |
+
examples = examples
|
92 |
).launch()
|