Re1e9's picture
Final Project
36bcbd2
raw
history blame
802 Bytes
import tensorflow
from tensorflow import keras
from keras.models import load_model
model1 = load_model("inception.h5")
img_width, img_height = 180, 180
class_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']
num_classes = len(class_names)
def predict_image(img):
img_4d = img.reshape(-1, img_width, img_height, 3) # 4D coz model trained on multiple 3Ds
prediction = model1.predict(img_4d)[0]
return {class_names[i]: float(prediction[i]) for i in range(num_classes)}
import gradio as gr
image = gr.inputs.Image(shape=(img_height, img_width))
label = gr.outputs.Label(num_top_classes=num_classes)
gr.Interface(fn=predict_image, inputs=image, outputs=label, title="Flower Classification using InceptionV3", interpretation='default').launch(debug='True', share='True')