File size: 7,243 Bytes
ee3f9f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import pandas as pd
import faiss
import numpy as np
import torch
import requests
import os
#import huggingface_hub
hf_token = os.getenv("hf_token")
#huggingface_hub.login(hf_token)

df = pd.read_excel("Allam_SA_Articles.xlsx")
input_texts = df['Article_text'].tolist()
MOJ_embeddings = np.load('Allam_embeddings.npy')


def embed_single_text(query):
    headers = {
        "Authorization": f"Bearer {hf_token}"
    }

    url = f"https://allam-llm-e5-embeddings.hf.space/e5_embeddings?query={query}"

    response = requests.get(url, headers=headers)

    if response.status_code == 200:
        return torch.tensor(response.json())
    else:
        print(f"Error: {response.status_code}")
        return None


#Faiss
dimension = MOJ_embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
index.add(MOJ_embeddings)

def query_search(query, K):
    query_embedding = embed_single_text(query)
    distances, indices = index.search(query_embedding, K)

    results = []
    for idx in indices[0]:
        file_id = df.iloc[idx]['File_ID']
        row_number = df.iloc[idx]['Row_Number']
        #results.append((file_id, row_number))
        results.append(idx)
    return results      

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

def return_top5_chunks(query):
  matching_indices = query_search(query, 15)
  relevant_rows = df.iloc[matching_indices]

  def chunk_text(text, max_words=150):
      words = text.split()
      return [' '.join(words[i:i+max_words]) for i in range(0, len(words), max_words)]

  relevant_rows['Chunks'] = relevant_rows['Article_text'].apply(chunk_text)

  chunked_texts = []
  for idx, row in relevant_rows.iterrows():
      for chunk in row['Chunks']:
          chunked_texts.append((chunk, idx))  

  def find_top_k_similar(texts, query, k):
      documents = [text for text, _ in texts]

      vectorizer = TfidfVectorizer()

      all_texts = documents + [query]

      tfidf_matrix = vectorizer.fit_transform(all_texts)

      similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()

      top_k_indices = similarities.argsort()[-k:][::-1]
      return [(texts[i], similarities[i]) for i in top_k_indices]

  top_5_chunks = find_top_k_similar(chunked_texts, query, 5)

  chunks_txt = ''
  for i, ((chunk, idx), similarity) in enumerate(top_5_chunks):
      chunks_txt += f"Index: {idx},\nChunk: {chunk}\n"

      if i < len(top_5_chunks) - 1:
          chunks_txt += "##########\n"

  return chunks_txt


import requests


api_key = 'UEGtyhQpPCKfhsQ_rPlBbEsgZErSh8xPU57qm9DQ-ZkC'

url = "https://iam.cloud.ibm.com/identity/token"

headers = {
    "Content-Type": "application/x-www-form-urlencoded"
}

data = {
    "grant_type": "urn:ibm:params:oauth:grant-type:apikey",
    "apikey": api_key
}

response = requests.post(url, headers=headers, data=data)
token_info = response.json()
access_token = token_info['access_token']  




def allam_response(context, query):
    url = "https://eu-de.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29"

    input_text_base = f"""

    [Context]: {context}

    [System]:

    You are an Arabic frindley chatbot named مستنير.

    You will be provided with an Arabic context ,

    Your task is to extract and Answer for the questions only from the context provided

    elaborate on the answer from the context

    At the end of your response mention the Article : مادة

    if no answer is found apologize



    Question: {query}

    """
    body = {
        "input": input_text_base,
        "parameters": {
          "decoding_method": "greedy",
          "max_new_tokens": 900,
          "min_new_tokens": 0,
          "stop_sequences": [],
          "repetition_penalty": 1
        },
        "model_id": "sdaia/allam-1-13b-instruct",
        "project_id": "72a4dcd4-e6e9-4cdc-9c7e-1a0ef1483936"
    }

    headers = {
        "Accept": "application/json",
        "Content-Type": "application/json",
        "Authorization": f"Bearer {access_token}"
    }

    response = requests.post(url, headers=headers, json=body)

    if response.status_code != 200:
        raise Exception("Non-200 response: " + str(response.text))

    response = response.json()

    return response['results'][0]['generated_text']



import json

import re

def index_num(text):

    match = re.search(r'"Index":\s*"(\d+)"', text)
    index_number = match.group(1) if match else None

    return int(index_number)

def get_top_matching_chunk(text, query, max_words=500):
    def chunk_text(text, max_words):
        words = text.split()
        return [' '.join(words[i:i+max_words]) for i in range(0, len(words), max_words)]

    chunks = chunk_text(text, max_words)

    vectorizer = TfidfVectorizer()
    all_texts = chunks + [query]
    tfidf_matrix = vectorizer.fit_transform(all_texts)

    similarities = cosine_similarity(tfidf_matrix[-1], tfidf_matrix[:-1]).flatten()

    top_chunk_index = similarities.argmax()

    return chunks[top_chunk_index]

def reformat_indentation(text, indent_spaces=4):
    indent = ' ' * indent_spaces

    lines = text.splitlines()

    formatted_lines = [indent + line.strip() for line in lines]

    return '\n'.join(formatted_lines)

def return_index_num(data_text, query):

    url = "https://eu-de.ml.cloud.ibm.com/ml/v1/text/generation?version=2023-05-29"

    sys_prompt = """

    Identify the **first** Index chunk with the answer to a given question.

    Chunks are seperated by ##########

    Respond only with **Json** format **do not return any words**:



    {"Index": "extracted_Index"}



    Or:



    {"Index": "not_found"}



    **No additional text allowed**.



    """
    sys_prompt += f"Question : {query}"

    input_text = f"""

    [Context]: {data_text.strip()}

    [System]: {sys_prompt.strip()}

    """

    input_text = reformat_indentation(input_text, indent_spaces=0)
    body = {
      "input": input_text,
      "parameters": {
          "decoding_method": "greedy",
          "max_new_tokens": 20,
          "repetition_penalty": 1
      },
      "model_id": "sdaia/allam-1-13b-instruct",
      "project_id": "72a4dcd4-e6e9-4cdc-9c7e-1a0ef1483936"
    }

    headers = {
      "Accept": "application/json",
      "Content-Type": "application/json",
      "Authorization": f"Bearer {access_token}"  # access_token must be defined elsewhere
    }


    response = requests.post(url, headers=headers, json=body)

    if response.status_code != 200:
      raise Exception("Non-200 response: " + str(response.text))

    response = response.json()

    return(response['results'][0]['generated_text'])



def allam_llm(q):

    chunks_text = return_top5_chunks(q)

    targeted_chunk = return_index_num(chunks_text, q)

    index_number = index_num(targeted_chunk)

    text_to_chunk = df['Article_text'][index_number]

    top_chunk = get_top_matching_chunk(text_to_chunk, q)

    allam_res = allam_response(top_chunk, q) 

    return allam_res