Spaces:
Running
Running
File size: 37,660 Bytes
d521fb7 8320ccc d521fb7 8320ccc d521fb7 9223079 d521fb7 57c1094 d521fb7 57c1094 d521fb7 9223079 e02ffe6 10dcc2e 9223079 a44851c 9223079 a44851c 9223079 aa46ae9 9223079 4d4dd90 2eaeef9 4d4dd90 f90241e 848664a aa46ae9 9223079 4ede021 9223079 4d4dd90 9223079 4d4dd90 4ede021 9223079 4d4dd90 9223079 2507d2f e400e91 2507d2f a44851c 2507d2f 9223079 57c1094 4c88343 9223079 57c1094 9223079 57c1094 4c88343 57c1094 4c88343 57c1094 4c88343 57c1094 4c88343 9223079 57c1094 9223079 e15a186 9223079 e15a186 9223079 4d4dd90 9223079 4d4dd90 9223079 3c77caa 6cb641c fe82065 e15a186 9223079 e15a186 9223079 4c88343 57c1094 4c88343 57c1094 4c88343 57c1094 4c88343 57c1094 4c88343 57c1094 4c88343 57c1094 4c88343 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 |
import argparse
import pprint
from collections import Counter, defaultdict
from itertools import chain
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, Iterable, List, Optional, Set, Tuple, Union
import cv2
import h5py
import numpy as np
import torch
import torchvision.transforms.functional as F
from scipy.spatial import KDTree
from tqdm import tqdm
from . import logger, matchers
from .extract_features import read_image, resize_image
from .match_features import find_unique_new_pairs
from .utils.base_model import dynamic_load
from .utils.io import list_h5_names
from .utils.parsers import names_to_pair, parse_retrieval
device = "cuda" if torch.cuda.is_available() else "cpu"
confs = {
# Best quality but loads of points. Only use for small scenes
"loftr": {
"output": "matches-loftr",
"model": {
"name": "loftr",
"weights": "outdoor",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": True,
"resize_max": 1024,
"dfactor": 8,
"width": 640,
"height": 480,
"force_resize": True,
},
"max_error": 1, # max error for assigned keypoints (in px)
"cell_size": 1, # size of quantization patch (max 1 kp/patch)
},
"eloftr": {
"output": "matches-eloftr",
"model": {
"name": "eloftr",
"weights": "weights/eloftr_outdoor.ckpt",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": True,
"resize_max": 1024,
"dfactor": 32,
"width": 640,
"height": 480,
"force_resize": True,
},
"max_error": 1, # max error for assigned keypoints (in px)
"cell_size": 1, # size of quantization patch (max 1 kp/patch)
},
# "loftr_quadtree": {
# "output": "matches-loftr-quadtree",
# "model": {
# "name": "quadtree",
# "weights": "outdoor",
# "max_keypoints": 2000,
# "match_threshold": 0.2,
# },
# "preprocessing": {
# "grayscale": True,
# "resize_max": 1024,
# "dfactor": 8,
# "width": 640,
# "height": 480,
# "force_resize": True,
# },
# "max_error": 1, # max error for assigned keypoints (in px)
# "cell_size": 1, # size of quantization patch (max 1 kp/patch)
# },
"cotr": {
"output": "matches-cotr",
"model": {
"name": "cotr",
"weights": "out/default",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": False,
"resize_max": 1024,
"dfactor": 8,
"width": 640,
"height": 480,
"force_resize": True,
},
"max_error": 1, # max error for assigned keypoints (in px)
"cell_size": 1, # size of quantization patch (max 1 kp/patch)
},
# Semi-scalable loftr which limits detected keypoints
"loftr_aachen": {
"output": "matches-loftr_aachen",
"model": {
"name": "loftr",
"weights": "outdoor",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": True,
"resize_max": 1024,
"dfactor": 8,
"width": 640,
"height": 480,
"force_resize": True,
},
"max_error": 2, # max error for assigned keypoints (in px)
"cell_size": 8, # size of quantization patch (max 1 kp/patch)
},
# Use for matching superpoint feats with loftr
"loftr_superpoint": {
"output": "matches-loftr_aachen",
"model": {
"name": "loftr",
"weights": "outdoor",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": True,
"resize_max": 1024,
"dfactor": 8,
"width": 640,
"height": 480,
"force_resize": True,
},
"max_error": 4, # max error for assigned keypoints (in px)
"cell_size": 4, # size of quantization patch (max 1 kp/patch)
},
# Use topicfm for matching feats
"topicfm": {
"output": "matches-topicfm",
"model": {
"name": "topicfm",
"weights": "outdoor",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": True,
"force_resize": True,
"resize_max": 1024,
"dfactor": 8,
"width": 640,
"height": 480,
},
},
# Use aspanformer for matching feats
"aspanformer": {
"output": "matches-aspanformer",
"model": {
"name": "aspanformer",
"weights": "outdoor",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": True,
"force_resize": True,
"resize_max": 1024,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"duster": {
"output": "matches-duster",
"model": {
"name": "duster",
"weights": "vit_large",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": False,
"resize_max": 512,
"dfactor": 16,
},
},
"mast3r": {
"output": "matches-mast3r",
"model": {
"name": "mast3r",
"weights": "vit_large",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": False,
"resize_max": 512,
"dfactor": 16,
},
},
"xfeat_lightglue": {
"output": "matches-xfeat_lightglue",
"model": {
"name": "xfeat_lightglue",
"max_keypoints": 8000,
},
"preprocessing": {
"grayscale": False,
"force_resize": False,
"resize_max": 1024,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"xfeat_dense": {
"output": "matches-xfeat_dense",
"model": {
"name": "xfeat_dense",
"max_keypoints": 8000,
},
"preprocessing": {
"grayscale": False,
"force_resize": False,
"resize_max": 1024,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"dkm": {
"output": "matches-dkm",
"model": {
"name": "dkm",
"weights": "outdoor",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": False,
"force_resize": True,
"resize_max": 1024,
"width": 80,
"height": 60,
"dfactor": 8,
},
},
"roma": {
"output": "matches-roma",
"model": {
"name": "roma",
"weights": "outdoor",
"model_name": "roma_outdoor.pth",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": False,
"force_resize": True,
"resize_max": 1024,
"width": 320,
"height": 240,
"dfactor": 8,
},
},
"gim(dkm)": {
"output": "matches-gim",
"model": {
"name": "gim",
"model_name": "gim_dkm_100h.ckpt",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": False,
"force_resize": True,
"resize_max": 1024,
"width": 320,
"height": 240,
"dfactor": 8,
},
},
"omniglue": {
"output": "matches-omniglue",
"model": {
"name": "omniglue",
"match_threshold": 0.2,
"max_keypoints": 2000,
"features": "null",
},
"preprocessing": {
"grayscale": False,
"resize_max": 1024,
"dfactor": 8,
"force_resize": False,
"resize_max": 1024,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"sold2": {
"output": "matches-sold2",
"model": {
"name": "sold2",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": True,
"force_resize": True,
"resize_max": 1024,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"gluestick": {
"output": "matches-gluestick",
"model": {
"name": "gluestick",
"use_lines": True,
"max_keypoints": 1000,
"max_lines": 300,
"force_num_keypoints": False,
},
"preprocessing": {
"grayscale": True,
"force_resize": True,
"resize_max": 1024,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
}
def to_cpts(kpts, ps):
if ps > 0.0:
kpts = np.round(np.round((kpts + 0.5) / ps) * ps - 0.5, 2)
return [tuple(cpt) for cpt in kpts]
def assign_keypoints(
kpts: np.ndarray,
other_cpts: Union[List[Tuple], np.ndarray],
max_error: float,
update: bool = False,
ref_bins: Optional[List[Counter]] = None,
scores: Optional[np.ndarray] = None,
cell_size: Optional[int] = None,
):
if not update:
# Without update this is just a NN search
if len(other_cpts) == 0 or len(kpts) == 0:
return np.full(len(kpts), -1)
dist, kpt_ids = KDTree(np.array(other_cpts)).query(kpts)
valid = dist <= max_error
kpt_ids[~valid] = -1
return kpt_ids
else:
ps = cell_size if cell_size is not None else max_error
ps = max(ps, max_error)
# With update we quantize and bin (optionally)
assert isinstance(other_cpts, list)
kpt_ids = []
cpts = to_cpts(kpts, ps)
bpts = to_cpts(kpts, int(max_error))
cp_to_id = {val: i for i, val in enumerate(other_cpts)}
for i, (cpt, bpt) in enumerate(zip(cpts, bpts)):
try:
kid = cp_to_id[cpt]
except KeyError:
kid = len(cp_to_id)
cp_to_id[cpt] = kid
other_cpts.append(cpt)
if ref_bins is not None:
ref_bins.append(Counter())
if ref_bins is not None:
score = scores[i] if scores is not None else 1
ref_bins[cp_to_id[cpt]][bpt] += score
kpt_ids.append(kid)
return np.array(kpt_ids)
def get_grouped_ids(array):
# Group array indices based on its values
# all duplicates are grouped as a set
idx_sort = np.argsort(array)
sorted_array = array[idx_sort]
_, ids, _ = np.unique(sorted_array, return_counts=True, return_index=True)
res = np.split(idx_sort, ids[1:])
return res
def get_unique_matches(match_ids, scores):
if len(match_ids.shape) == 1:
return [0]
isets1 = get_grouped_ids(match_ids[:, 0])
isets2 = get_grouped_ids(match_ids[:, 1])
uid1s = [ids[scores[ids].argmax()] for ids in isets1 if len(ids) > 0]
uid2s = [ids[scores[ids].argmax()] for ids in isets2 if len(ids) > 0]
uids = list(set(uid1s).intersection(uid2s))
return match_ids[uids], scores[uids]
def matches_to_matches0(matches, scores):
if len(matches) == 0:
return np.zeros(0, dtype=np.int32), np.zeros(0, dtype=np.float16)
n_kps0 = np.max(matches[:, 0]) + 1
matches0 = -np.ones((n_kps0,))
scores0 = np.zeros((n_kps0,))
matches0[matches[:, 0]] = matches[:, 1]
scores0[matches[:, 0]] = scores
return matches0.astype(np.int32), scores0.astype(np.float16)
def kpids_to_matches0(kpt_ids0, kpt_ids1, scores):
valid = (kpt_ids0 != -1) & (kpt_ids1 != -1)
matches = np.dstack([kpt_ids0[valid], kpt_ids1[valid]])
matches = matches.reshape(-1, 2)
scores = scores[valid]
# Remove n-to-1 matches
matches, scores = get_unique_matches(matches, scores)
return matches_to_matches0(matches, scores)
def scale_keypoints(kpts, scale):
if np.any(scale != 1.0):
kpts *= kpts.new_tensor(scale)
return kpts
class ImagePairDataset(torch.utils.data.Dataset):
default_conf = {
"grayscale": True,
"resize_max": 1024,
"dfactor": 8,
"cache_images": False,
}
def __init__(self, image_dir, conf, pairs):
self.image_dir = image_dir
self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
self.pairs = pairs
if self.conf.cache_images:
image_names = set(sum(pairs, ())) # unique image names in pairs
logger.info(
f"Loading and caching {len(image_names)} unique images."
)
self.images = {}
self.scales = {}
for name in tqdm(image_names):
image = read_image(self.image_dir / name, self.conf.grayscale)
self.images[name], self.scales[name] = self.preprocess(image)
def preprocess(self, image: np.ndarray):
image = image.astype(np.float32, copy=False)
size = image.shape[:2][::-1]
scale = np.array([1.0, 1.0])
if self.conf.resize_max:
scale = self.conf.resize_max / max(size)
if scale < 1.0:
size_new = tuple(int(round(x * scale)) for x in size)
image = resize_image(image, size_new, "cv2_area")
scale = np.array(size) / np.array(size_new)
if self.conf.grayscale:
assert image.ndim == 2, image.shape
image = image[None]
else:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
image = torch.from_numpy(image / 255.0).float()
# assure that the size is divisible by dfactor
size_new = tuple(
map(
lambda x: int(x // self.conf.dfactor * self.conf.dfactor),
image.shape[-2:],
)
)
image = F.resize(image, size=size_new)
scale = np.array(size) / np.array(size_new)[::-1]
return image, scale
def __len__(self):
return len(self.pairs)
def __getitem__(self, idx):
name0, name1 = self.pairs[idx]
if self.conf.cache_images:
image0, scale0 = self.images[name0], self.scales[name0]
image1, scale1 = self.images[name1], self.scales[name1]
else:
image0 = read_image(self.image_dir / name0, self.conf.grayscale)
image1 = read_image(self.image_dir / name1, self.conf.grayscale)
image0, scale0 = self.preprocess(image0)
image1, scale1 = self.preprocess(image1)
return image0, image1, scale0, scale1, name0, name1
@torch.no_grad()
def match_dense(
conf: Dict,
pairs: List[Tuple[str, str]],
image_dir: Path,
match_path: Path, # out
existing_refs: Optional[List] = [],
):
device = "cuda" if torch.cuda.is_available() else "cpu"
Model = dynamic_load(matchers, conf["model"]["name"])
model = Model(conf["model"]).eval().to(device)
dataset = ImagePairDataset(image_dir, conf["preprocessing"], pairs)
loader = torch.utils.data.DataLoader(
dataset, num_workers=16, batch_size=1, shuffle=False
)
logger.info("Performing dense matching...")
with h5py.File(str(match_path), "a") as fd:
for data in tqdm(loader, smoothing=0.1):
# load image-pair data
image0, image1, scale0, scale1, (name0,), (name1,) = data
scale0, scale1 = scale0[0].numpy(), scale1[0].numpy()
image0, image1 = image0.to(device), image1.to(device)
# match semi-dense
# for consistency with pairs_from_*: refine kpts of image0
if name0 in existing_refs:
# special case: flip to enable refinement in query image
pred = model({"image0": image1, "image1": image0})
pred = {
**pred,
"keypoints0": pred["keypoints1"],
"keypoints1": pred["keypoints0"],
}
else:
# usual case
pred = model({"image0": image0, "image1": image1})
# Rescale keypoints and move to cpu
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
kpts0 = scale_keypoints(kpts0 + 0.5, scale0) - 0.5
kpts1 = scale_keypoints(kpts1 + 0.5, scale1) - 0.5
kpts0 = kpts0.cpu().numpy()
kpts1 = kpts1.cpu().numpy()
scores = pred["scores"].cpu().numpy()
# Write matches and matching scores in hloc format
pair = names_to_pair(name0, name1)
if pair in fd:
del fd[pair]
grp = fd.create_group(pair)
# Write dense matching output
grp.create_dataset("keypoints0", data=kpts0)
grp.create_dataset("keypoints1", data=kpts1)
grp.create_dataset("scores", data=scores)
del model, loader
# default: quantize all!
def load_keypoints(
conf: Dict, feature_paths_refs: List[Path], quantize: Optional[set] = None
):
name2ref = {
n: i for i, p in enumerate(feature_paths_refs) for n in list_h5_names(p)
}
existing_refs = set(name2ref.keys())
if quantize is None:
quantize = existing_refs # quantize all
if len(existing_refs) > 0:
logger.info(f"Loading keypoints from {len(existing_refs)} images.")
# Load query keypoints
cpdict = defaultdict(list)
bindict = defaultdict(list)
for name in existing_refs:
with h5py.File(str(feature_paths_refs[name2ref[name]]), "r") as fd:
kps = fd[name]["keypoints"].__array__()
if name not in quantize:
cpdict[name] = kps
else:
if "scores" in fd[name].keys():
kp_scores = fd[name]["scores"].__array__()
else:
# we set the score to 1.0 if not provided
# increase for more weight on reference keypoints for
# stronger anchoring
kp_scores = [1.0 for _ in range(kps.shape[0])]
# bin existing keypoints of reference images for association
assign_keypoints(
kps,
cpdict[name],
conf["max_error"],
True,
bindict[name],
kp_scores,
conf["cell_size"],
)
return cpdict, bindict
def aggregate_matches(
conf: Dict,
pairs: List[Tuple[str, str]],
match_path: Path,
feature_path: Path,
required_queries: Optional[Set[str]] = None,
max_kps: Optional[int] = None,
cpdict: Dict[str, Iterable] = defaultdict(list),
bindict: Dict[str, List[Counter]] = defaultdict(list),
):
if required_queries is None:
required_queries = set(sum(pairs, ()))
# default: do not overwrite existing features in feature_path!
required_queries -= set(list_h5_names(feature_path))
# if an entry in cpdict is provided as np.ndarray we assume it is fixed
required_queries -= set(
[k for k, v in cpdict.items() if isinstance(v, np.ndarray)]
)
# sort pairs for reduced RAM
pairs_per_q = Counter(list(chain(*pairs)))
pairs_score = [min(pairs_per_q[i], pairs_per_q[j]) for i, j in pairs]
pairs = [p for _, p in sorted(zip(pairs_score, pairs))]
if len(required_queries) > 0:
logger.info(
f"Aggregating keypoints for {len(required_queries)} images."
)
n_kps = 0
with h5py.File(str(match_path), "a") as fd:
for name0, name1 in tqdm(pairs, smoothing=0.1):
pair = names_to_pair(name0, name1)
grp = fd[pair]
kpts0 = grp["keypoints0"].__array__()
kpts1 = grp["keypoints1"].__array__()
scores = grp["scores"].__array__()
# Aggregate local features
update0 = name0 in required_queries
update1 = name1 in required_queries
# in localization we do not want to bin the query kp
# assumes that the query is name0!
if update0 and not update1 and max_kps is None:
max_error0 = cell_size0 = 0.0
else:
max_error0 = conf["max_error"]
cell_size0 = conf["cell_size"]
# Get match ids and extend query keypoints (cpdict)
mkp_ids0 = assign_keypoints(
kpts0,
cpdict[name0],
max_error0,
update0,
bindict[name0],
scores,
cell_size0,
)
mkp_ids1 = assign_keypoints(
kpts1,
cpdict[name1],
conf["max_error"],
update1,
bindict[name1],
scores,
conf["cell_size"],
)
# Build matches from assignments
matches0, scores0 = kpids_to_matches0(mkp_ids0, mkp_ids1, scores)
assert kpts0.shape[0] == scores.shape[0]
grp.create_dataset("matches0", data=matches0)
grp.create_dataset("matching_scores0", data=scores0)
# Convert bins to kps if finished, and store them
for name in (name0, name1):
pairs_per_q[name] -= 1
if pairs_per_q[name] > 0 or name not in required_queries:
continue
kp_score = [c.most_common(1)[0][1] for c in bindict[name]]
cpdict[name] = [c.most_common(1)[0][0] for c in bindict[name]]
cpdict[name] = np.array(cpdict[name], dtype=np.float32)
# Select top-k query kps by score (reassign matches later)
if max_kps:
top_k = min(max_kps, cpdict[name].shape[0])
top_k = np.argsort(kp_score)[::-1][:top_k]
cpdict[name] = cpdict[name][top_k]
kp_score = np.array(kp_score)[top_k]
# Write query keypoints
with h5py.File(feature_path, "a") as kfd:
if name in kfd:
del kfd[name]
kgrp = kfd.create_group(name)
kgrp.create_dataset("keypoints", data=cpdict[name])
kgrp.create_dataset("score", data=kp_score)
n_kps += cpdict[name].shape[0]
del bindict[name]
if len(required_queries) > 0:
avg_kp_per_image = round(n_kps / len(required_queries), 1)
logger.info(
f"Finished assignment, found {avg_kp_per_image} "
f"keypoints/image (avg.), total {n_kps}."
)
return cpdict
def assign_matches(
pairs: List[Tuple[str, str]],
match_path: Path,
keypoints: Union[List[Path], Dict[str, np.array]],
max_error: float,
):
if isinstance(keypoints, list):
keypoints = load_keypoints({}, keypoints, kpts_as_bin=set([]))
assert len(set(sum(pairs, ())) - set(keypoints.keys())) == 0
with h5py.File(str(match_path), "a") as fd:
for name0, name1 in tqdm(pairs):
pair = names_to_pair(name0, name1)
grp = fd[pair]
kpts0 = grp["keypoints0"].__array__()
kpts1 = grp["keypoints1"].__array__()
scores = grp["scores"].__array__()
# NN search across cell boundaries
mkp_ids0 = assign_keypoints(kpts0, keypoints[name0], max_error)
mkp_ids1 = assign_keypoints(kpts1, keypoints[name1], max_error)
matches0, scores0 = kpids_to_matches0(mkp_ids0, mkp_ids1, scores)
# overwrite matches0 and matching_scores0
del grp["matches0"], grp["matching_scores0"]
grp.create_dataset("matches0", data=matches0)
grp.create_dataset("matching_scores0", data=scores0)
@torch.no_grad()
def match_and_assign(
conf: Dict,
pairs_path: Path,
image_dir: Path,
match_path: Path, # out
feature_path_q: Path, # out
feature_paths_refs: Optional[List[Path]] = [],
max_kps: Optional[int] = 8192,
overwrite: bool = False,
) -> Path:
for path in feature_paths_refs:
if not path.exists():
raise FileNotFoundError(f"Reference feature file {path}.")
pairs = parse_retrieval(pairs_path)
pairs = [(q, r) for q, rs in pairs.items() for r in rs]
pairs = find_unique_new_pairs(pairs, None if overwrite else match_path)
required_queries = set(sum(pairs, ()))
name2ref = {
n: i for i, p in enumerate(feature_paths_refs) for n in list_h5_names(p)
}
existing_refs = required_queries.intersection(set(name2ref.keys()))
# images which require feature extraction
required_queries = required_queries - existing_refs
if feature_path_q.exists():
existing_queries = set(list_h5_names(feature_path_q))
feature_paths_refs.append(feature_path_q)
existing_refs = set.union(existing_refs, existing_queries)
if not overwrite:
required_queries = required_queries - existing_queries
if len(pairs) == 0 and len(required_queries) == 0:
logger.info("All pairs exist. Skipping dense matching.")
return
# extract semi-dense matches
match_dense(conf, pairs, image_dir, match_path, existing_refs=existing_refs)
logger.info("Assigning matches...")
# Pre-load existing keypoints
cpdict, bindict = load_keypoints(
conf, feature_paths_refs, quantize=required_queries
)
# Reassign matches by aggregation
cpdict = aggregate_matches(
conf,
pairs,
match_path,
feature_path=feature_path_q,
required_queries=required_queries,
max_kps=max_kps,
cpdict=cpdict,
bindict=bindict,
)
# Invalidate matches that are far from selected bin by reassignment
if max_kps is not None:
logger.info(f'Reassign matches with max_error={conf["max_error"]}.')
assign_matches(pairs, match_path, cpdict, max_error=conf["max_error"])
def scale_lines(lines, scale):
if np.any(scale != 1.0):
lines *= lines.new_tensor(scale)
return lines
def match(model, path_0, path_1, conf):
default_conf = {
"grayscale": True,
"resize_max": 1024,
"dfactor": 8,
"cache_images": False,
"force_resize": False,
"width": 320,
"height": 240,
}
def preprocess(image: np.ndarray):
image = image.astype(np.float32, copy=False)
size = image.shape[:2][::-1]
scale = np.array([1.0, 1.0])
if conf.resize_max:
scale = conf.resize_max / max(size)
if scale < 1.0:
size_new = tuple(int(round(x * scale)) for x in size)
image = resize_image(image, size_new, "cv2_area")
scale = np.array(size) / np.array(size_new)
if conf.force_resize:
size = image.shape[:2][::-1]
image = resize_image(image, (conf.width, conf.height), "cv2_area")
size_new = (conf.width, conf.height)
scale = np.array(size) / np.array(size_new)
if conf.grayscale:
assert image.ndim == 2, image.shape
image = image[None]
else:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
image = torch.from_numpy(image / 255.0).float()
# assure that the size is divisible by dfactor
size_new = tuple(
map(
lambda x: int(x // conf.dfactor * conf.dfactor),
image.shape[-2:],
)
)
image = F.resize(image, size=size_new, antialias=True)
scale = np.array(size) / np.array(size_new)[::-1]
return image, scale
conf = SimpleNamespace(**{**default_conf, **conf})
image0 = read_image(path_0, conf.grayscale)
image1 = read_image(path_1, conf.grayscale)
image0, scale0 = preprocess(image0)
image1, scale1 = preprocess(image1)
image0 = image0.to(device)[None]
image1 = image1.to(device)[None]
pred = model({"image0": image0, "image1": image1})
# Rescale keypoints and move to cpu
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
kpts0 = scale_keypoints(kpts0 + 0.5, scale0) - 0.5
kpts1 = scale_keypoints(kpts1 + 0.5, scale1) - 0.5
ret = {
"image0": image0.squeeze().cpu().numpy(),
"image1": image1.squeeze().cpu().numpy(),
"keypoints0": kpts0.cpu().numpy(),
"keypoints1": kpts1.cpu().numpy(),
}
if "mconf" in pred.keys():
ret["mconf"] = pred["mconf"].cpu().numpy()
return ret
@torch.no_grad()
def match_images(model, image_0, image_1, conf, device="cpu"):
default_conf = {
"grayscale": True,
"resize_max": 1024,
"dfactor": 8,
"cache_images": False,
"force_resize": False,
"width": 320,
"height": 240,
}
def preprocess(image: np.ndarray):
image = image.astype(np.float32, copy=False)
size = image.shape[:2][::-1]
scale = np.array([1.0, 1.0])
if conf.resize_max:
scale = conf.resize_max / max(size)
if scale < 1.0:
size_new = tuple(int(round(x * scale)) for x in size)
image = resize_image(image, size_new, "cv2_area")
scale = np.array(size) / np.array(size_new)
if conf.force_resize:
size = image.shape[:2][::-1]
image = resize_image(image, (conf.width, conf.height), "cv2_area")
size_new = (conf.width, conf.height)
scale = np.array(size) / np.array(size_new)
if conf.grayscale:
assert image.ndim == 2, image.shape
image = image[None]
else:
image = image.transpose((2, 0, 1)) # HxWxC to CxHxW
image = torch.from_numpy(image / 255.0).float()
# assure that the size is divisible by dfactor
size_new = tuple(
map(
lambda x: int(x // conf.dfactor * conf.dfactor),
image.shape[-2:],
)
)
image = F.resize(image, size=size_new)
scale = np.array(size) / np.array(size_new)[::-1]
return image, scale
conf = SimpleNamespace(**{**default_conf, **conf})
if len(image_0.shape) == 3 and conf.grayscale:
image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY)
else:
image0 = image_0
if len(image_0.shape) == 3 and conf.grayscale:
image1 = cv2.cvtColor(image_1, cv2.COLOR_RGB2GRAY)
else:
image1 = image_1
# comment following lines, image is always RGB mode
# if not conf.grayscale and len(image0.shape) == 3:
# image0 = image0[:, :, ::-1] # BGR to RGB
# if not conf.grayscale and len(image1.shape) == 3:
# image1 = image1[:, :, ::-1] # BGR to RGB
image0, scale0 = preprocess(image0)
image1, scale1 = preprocess(image1)
image0 = image0.to(device)[None]
image1 = image1.to(device)[None]
pred = model({"image0": image0, "image1": image1})
s0 = np.array(image_0.shape[:2][::-1]) / np.array(image0.shape[-2:][::-1])
s1 = np.array(image_1.shape[:2][::-1]) / np.array(image1.shape[-2:][::-1])
# Rescale keypoints and move to cpu
if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5
kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5
ret = {
"image0": image0.squeeze().cpu().numpy(),
"image1": image1.squeeze().cpu().numpy(),
"image0_orig": image_0,
"image1_orig": image_1,
"keypoints0": kpts0.cpu().numpy(),
"keypoints1": kpts1.cpu().numpy(),
"keypoints0_orig": kpts0_origin.cpu().numpy(),
"keypoints1_orig": kpts1_origin.cpu().numpy(),
"mkeypoints0": kpts0.cpu().numpy(),
"mkeypoints1": kpts1.cpu().numpy(),
"mkeypoints0_orig": kpts0_origin.cpu().numpy(),
"mkeypoints1_orig": kpts1_origin.cpu().numpy(),
"original_size0": np.array(image_0.shape[:2][::-1]),
"original_size1": np.array(image_1.shape[:2][::-1]),
"new_size0": np.array(image0.shape[-2:][::-1]),
"new_size1": np.array(image1.shape[-2:][::-1]),
"scale0": s0,
"scale1": s1,
}
if "mconf" in pred.keys():
ret["mconf"] = pred["mconf"].cpu().numpy()
elif "scores" in pred.keys(): # adapting loftr
ret["mconf"] = pred["scores"].cpu().numpy()
else:
ret["mconf"] = np.ones_like(kpts0.cpu().numpy()[:, 0])
if "lines0" in pred.keys() and "lines1" in pred.keys():
if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5
kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5
kpts0_origin = kpts0_origin.cpu().numpy()
kpts1_origin = kpts1_origin.cpu().numpy()
else:
kpts0_origin, kpts1_origin = (
None,
None,
) # np.zeros([0]), np.zeros([0])
lines0, lines1 = pred["lines0"], pred["lines1"]
lines0_raw, lines1_raw = pred["raw_lines0"], pred["raw_lines1"]
lines0_raw = torch.from_numpy(lines0_raw.copy())
lines1_raw = torch.from_numpy(lines1_raw.copy())
lines0_raw = scale_lines(lines0_raw + 0.5, s0) - 0.5
lines1_raw = scale_lines(lines1_raw + 0.5, s1) - 0.5
lines0 = torch.from_numpy(lines0.copy())
lines1 = torch.from_numpy(lines1.copy())
lines0 = scale_lines(lines0 + 0.5, s0) - 0.5
lines1 = scale_lines(lines1 + 0.5, s1) - 0.5
ret = {
"image0_orig": image_0,
"image1_orig": image_1,
"line0": lines0_raw.cpu().numpy(),
"line1": lines1_raw.cpu().numpy(),
"line0_orig": lines0.cpu().numpy(),
"line1_orig": lines1.cpu().numpy(),
"line_keypoints0_orig": kpts0_origin,
"line_keypoints1_orig": kpts1_origin,
}
del pred
torch.cuda.empty_cache()
return ret
@torch.no_grad()
def main(
conf: Dict,
pairs: Path,
image_dir: Path,
export_dir: Optional[Path] = None,
matches: Optional[Path] = None, # out
features: Optional[Path] = None, # out
features_ref: Optional[Path] = None,
max_kps: Optional[int] = 8192,
overwrite: bool = False,
) -> Path:
logger.info(
"Extracting semi-dense features with configuration:"
f"\n{pprint.pformat(conf)}"
)
if features is None:
features = "feats_"
if isinstance(features, Path):
features_q = features
if matches is None:
raise ValueError(
"Either provide both features and matches as Path"
" or both as names."
)
else:
if export_dir is None:
raise ValueError(
"Provide an export_dir if features and matches"
f" are not file paths: {features}, {matches}."
)
features_q = Path(export_dir, f'{features}{conf["output"]}.h5')
if matches is None:
matches = Path(export_dir, f'{conf["output"]}_{pairs.stem}.h5')
if features_ref is None:
features_ref = []
elif isinstance(features_ref, list):
features_ref = list(features_ref)
elif isinstance(features_ref, Path):
features_ref = [features_ref]
else:
raise TypeError(str(features_ref))
match_and_assign(
conf,
pairs,
image_dir,
matches,
features_q,
features_ref,
max_kps,
overwrite,
)
return features_q, matches
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pairs", type=Path, required=True)
parser.add_argument("--image_dir", type=Path, required=True)
parser.add_argument("--export_dir", type=Path, required=True)
parser.add_argument(
"--matches", type=Path, default=confs["loftr"]["output"]
)
parser.add_argument(
"--features", type=str, default="feats_" + confs["loftr"]["output"]
)
parser.add_argument(
"--conf", type=str, default="loftr", choices=list(confs.keys())
)
args = parser.parse_args()
main(
confs[args.conf],
args.pairs,
args.image_dir,
args.export_dir,
args.matches,
args.features,
)
|