Spaces:
Running
Running
# -*- coding: UTF-8 -*- | |
'''================================================= | |
@Project -> File pram -> utils | |
@IDE PyCharm | |
@Author fx221@cam.ac.uk | |
@Date 29/01/2024 14:31 | |
==================================================''' | |
import torch | |
def normalize_size(x, size, scale=0.7): | |
size = size.reshape([1, 2]) | |
norm_fac = size.max() + 0.5 | |
return (x - size / 2) / (norm_fac * scale) | |
def collect_batch(batch): | |
out = {} | |
# if len(batch) == 0: | |
# return batch | |
# else: | |
for k in batch[0].keys(): | |
tmp = [] | |
for v in batch: | |
tmp.append(v[k]) | |
if isinstance(batch[0][k], str) or isinstance(batch[0][k], list): | |
out[k] = tmp | |
else: | |
out[k] = torch.cat([torch.from_numpy(i)[None] for i in tmp], dim=0) | |
return out | |