Spaces:
Running
Running
import sys | |
from pathlib import Path | |
import subprocess | |
import logging | |
import torch | |
from ..utils.base_model import BaseModel | |
logger = logging.getLogger(__name__) | |
gluestick_path = Path(__file__).parent / "../../third_party/GlueStick" | |
sys.path.append(str(gluestick_path)) | |
from gluestick import batch_to_np | |
from gluestick.models.two_view_pipeline import TwoViewPipeline | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class GlueStick(BaseModel): | |
default_conf = { | |
"name": "two_view_pipeline", | |
"model_name": "checkpoint_GlueStick_MD.tar", | |
"use_lines": True, | |
"max_keypoints": 1000, | |
"max_lines": 300, | |
"force_num_keypoints": False, | |
} | |
required_inputs = [ | |
"image0", | |
"image1", | |
] | |
gluestick_models = { | |
"checkpoint_GlueStick_MD.tar": "https://github.com/cvg/GlueStick/releases/download/v0.1_arxiv/checkpoint_GlueStick_MD.tar", | |
} | |
# Initialize the line matcher | |
def _init(self, conf): | |
model_path = gluestick_path / "resources" / "weights" / conf["model_name"] | |
# Download the model. | |
if not model_path.exists(): | |
model_path.parent.mkdir(exist_ok=True) | |
link = self.gluestick_models[conf["model_name"]] | |
cmd = ["wget", link, "-O", str(model_path)] | |
logger.info(f"Downloading the Gluestick model with `{cmd}`.") | |
subprocess.run(cmd, check=True) | |
logger.info(f"Loading GlueStick model...") | |
gluestick_conf = { | |
"name": "two_view_pipeline", | |
"use_lines": True, | |
"extractor": { | |
"name": "wireframe", | |
"sp_params": { | |
"force_num_keypoints": False, | |
"max_num_keypoints": 1000, | |
}, | |
"wireframe_params": { | |
"merge_points": True, | |
"merge_line_endpoints": True, | |
}, | |
"max_n_lines": 300, | |
}, | |
"matcher": { | |
"name": "gluestick", | |
"weights": str(model_path), | |
"trainable": False, | |
}, | |
"ground_truth": { | |
"from_pose_depth": False, | |
}, | |
} | |
gluestick_conf["extractor"]["sp_params"]["max_num_keypoints"] = conf[ | |
"max_keypoints" | |
] | |
gluestick_conf["extractor"]["sp_params"]["force_num_keypoints"] = conf[ | |
"force_num_keypoints" | |
] | |
gluestick_conf["extractor"]["max_n_lines"] = conf["max_lines"] | |
self.net = TwoViewPipeline(gluestick_conf) | |
def _forward(self, data): | |
pred = self.net(data) | |
pred = batch_to_np(pred) | |
kp0, kp1 = pred["keypoints0"], pred["keypoints1"] | |
m0 = pred["matches0"] | |
line_seg0, line_seg1 = pred["lines0"], pred["lines1"] | |
line_matches = pred["line_matches0"] | |
valid_matches = m0 != -1 | |
match_indices = m0[valid_matches] | |
matched_kps0 = kp0[valid_matches] | |
matched_kps1 = kp1[match_indices] | |
valid_matches = line_matches != -1 | |
match_indices = line_matches[valid_matches] | |
matched_lines0 = line_seg0[valid_matches] | |
matched_lines1 = line_seg1[match_indices] | |
pred["raw_lines0"], pred["raw_lines1"] = line_seg0, line_seg1 | |
pred["lines0"], pred["lines1"] = matched_lines0, matched_lines1 | |
pred["keypoints0"], pred["keypoints1"] = torch.from_numpy( | |
matched_kps0 | |
), torch.from_numpy(matched_kps1) | |
pred = {**pred, **data} | |
return pred | |