Vincentqyw
fix: roma
c74a070
raw
history blame
6.36 kB
import io
from loguru import logger
import cv2
import numpy as np
import h5py
import torch
from numpy.linalg import inv
MEGADEPTH_CLIENT = SCANNET_CLIENT = None
# --- DATA IO ---
def load_array_from_s3(
path,
client,
cv_type,
use_h5py=False,
):
byte_str = client.Get(path)
try:
if not use_h5py:
raw_array = np.fromstring(byte_str, np.uint8)
data = cv2.imdecode(raw_array, cv_type)
else:
f = io.BytesIO(byte_str)
data = np.array(h5py.File(f, "r")["/depth"])
except Exception as ex:
print(f"==> Data loading failure: {path}")
raise ex
assert data is not None
return data
def imread_gray(path, augment_fn=None, client=SCANNET_CLIENT):
cv_type = cv2.IMREAD_GRAYSCALE if augment_fn is None else cv2.IMREAD_COLOR
if str(path).startswith("s3://"):
image = load_array_from_s3(str(path), client, cv_type)
else:
image = cv2.imread(str(path), cv_type)
if augment_fn is not None:
image = cv2.imread(str(path), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = augment_fn(image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
return image # (h, w)
def get_resized_wh(w, h, resize=None):
if (resize is not None) and (max(h, w) > resize): # resize the longer edge
scale = resize / max(h, w)
w_new, h_new = int(round(w * scale)), int(round(h * scale))
else:
w_new, h_new = w, h
return w_new, h_new
def get_divisible_wh(w, h, df=None):
if df is not None:
w_new, h_new = map(lambda x: int(x // df * df), [w, h])
else:
w_new, h_new = w, h
return w_new, h_new
def pad_bottom_right(inp, pad_size, ret_mask=False):
assert isinstance(pad_size, int) and pad_size >= max(
inp.shape[-2:]
), f"{pad_size} < {max(inp.shape[-2:])}"
mask = None
if inp.ndim == 2:
padded = np.zeros((pad_size, pad_size), dtype=inp.dtype)
padded[: inp.shape[0], : inp.shape[1]] = inp
if ret_mask:
mask = np.zeros((pad_size, pad_size), dtype=bool)
mask[: inp.shape[0], : inp.shape[1]] = True
elif inp.ndim == 3:
padded = np.zeros((inp.shape[0], pad_size, pad_size), dtype=inp.dtype)
padded[:, : inp.shape[1], : inp.shape[2]] = inp
if ret_mask:
mask = np.zeros((inp.shape[0], pad_size, pad_size), dtype=bool)
mask[:, : inp.shape[1], : inp.shape[2]] = True
else:
raise NotImplementedError()
return padded, mask
# --- MEGADEPTH ---
def read_megadepth_gray(path, resize=None, df=None, padding=False, augment_fn=None):
"""
Args:
resize (int, optional): the longer edge of resized images. None for no resize.
padding (bool): If set to 'True', zero-pad resized images to squared size.
augment_fn (callable, optional): augments images with pre-defined visual effects
Returns:
image (torch.tensor): (1, h, w)
mask (torch.tensor): (h, w)
scale (torch.tensor): [w/w_new, h/h_new]
"""
# read image
image = imread_gray(path, augment_fn, client=MEGADEPTH_CLIENT)
# resize image
w, h = image.shape[1], image.shape[0]
w_new, h_new = get_resized_wh(w, h, resize)
w_new, h_new = get_divisible_wh(w_new, h_new, df)
image = cv2.resize(image, (w_new, h_new))
scale = torch.tensor([w / w_new, h / h_new], dtype=torch.float)
if padding: # padding
pad_to = resize # max(h_new, w_new)
image, mask = pad_bottom_right(image, pad_to, ret_mask=True)
else:
mask = None
image = (
torch.from_numpy(image).float()[None] / 255
) # (h, w) -> (1, h, w) and normalized
mask = torch.from_numpy(mask) if mask is not None else None
return image, mask, scale
def read_megadepth_depth(path, pad_to=None):
if str(path).startswith("s3://"):
depth = load_array_from_s3(path, MEGADEPTH_CLIENT, None, use_h5py=True)
else:
depth = np.array(h5py.File(path, "r")["depth"])
if pad_to is not None:
depth, _ = pad_bottom_right(depth, pad_to, ret_mask=False)
depth = torch.from_numpy(depth).float() # (h, w)
return depth
# --- ScanNet ---
def read_scannet_gray(path, resize=(640, 480), augment_fn=None):
"""
Args:
resize (tuple): align image to depthmap, in (w, h).
augment_fn (callable, optional): augments images with pre-defined visual effects
Returns:
image (torch.tensor): (1, h, w)
mask (torch.tensor): (h, w)
scale (torch.tensor): [w/w_new, h/h_new]
"""
# read and resize image
image = imread_gray(path, augment_fn)
image = cv2.resize(image, resize)
# (h, w) -> (1, h, w) and normalized
image = torch.from_numpy(image).float()[None] / 255
return image
# ---- evaluation datasets: HLoc, Aachen, InLoc
def read_img_gray(path, resize=None, down_factor=16):
# read and resize image
image = imread_gray(path, None)
w, h = image.shape[1], image.shape[0]
if (resize is not None) and (max(h, w) > resize):
scale = float(resize / max(h, w))
w_new, h_new = int(round(w * scale)), int(round(h * scale))
else:
w_new, h_new = w, h
w_new, h_new = get_divisible_wh(w_new, h_new, down_factor)
image = cv2.resize(image, (w_new, h_new))
# (h, w) -> (1, h, w) and normalized
image = torch.from_numpy(image).float()[None] / 255
scale = torch.tensor([w / w_new, h / h_new], dtype=torch.float)
return image, scale
def read_scannet_depth(path):
if str(path).startswith("s3://"):
depth = load_array_from_s3(str(path), SCANNET_CLIENT, cv2.IMREAD_UNCHANGED)
else:
depth = cv2.imread(str(path), cv2.IMREAD_UNCHANGED)
depth = depth / 1000
depth = torch.from_numpy(depth).float() # (h, w)
return depth
def read_scannet_pose(path):
"""Read ScanNet's Camera2World pose and transform it to World2Camera.
Returns:
pose_w2c (np.ndarray): (4, 4)
"""
cam2world = np.loadtxt(path, delimiter=" ")
world2cam = inv(cam2world)
return world2cam
def read_scannet_intrinsic(path):
"""Read ScanNet's intrinsic matrix and return the 3x3 matrix."""
intrinsic = np.loadtxt(path, delimiter=" ")
return intrinsic[:-1, :-1]