Spaces:
Running
Running
#! /usr/bin/env python3 | |
# | |
# %BANNER_BEGIN% | |
# --------------------------------------------------------------------- | |
# %COPYRIGHT_BEGIN% | |
# | |
# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL | |
# | |
# Unpublished Copyright (c) 2020 | |
# Magic Leap, Inc., All Rights Reserved. | |
# | |
# NOTICE: All information contained herein is, and remains the property | |
# of COMPANY. The intellectual and technical concepts contained herein | |
# are proprietary to COMPANY and may be covered by U.S. and Foreign | |
# Patents, patents in process, and are protected by trade secret or | |
# copyright law. Dissemination of this information or reproduction of | |
# this material is strictly forbidden unless prior written permission is | |
# obtained from COMPANY. Access to the source code contained herein is | |
# hereby forbidden to anyone except current COMPANY employees, managers | |
# or contractors who have executed Confidentiality and Non-disclosure | |
# agreements explicitly covering such access. | |
# | |
# The copyright notice above does not evidence any actual or intended | |
# publication or disclosure of this source code, which includes | |
# information that is confidential and/or proprietary, and is a trade | |
# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION, | |
# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS | |
# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS | |
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND | |
# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE | |
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS | |
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, | |
# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART. | |
# | |
# %COPYRIGHT_END% | |
# ---------------------------------------------------------------------- | |
# %AUTHORS_BEGIN% | |
# | |
# Originating Authors: Paul-Edouard Sarlin | |
# Daniel DeTone | |
# Tomasz Malisiewicz | |
# | |
# %AUTHORS_END% | |
# --------------------------------------------------------------------*/ | |
# %BANNER_END% | |
from pathlib import Path | |
import argparse | |
import cv2 | |
import matplotlib.cm as cm | |
import torch | |
from models.matching import Matching | |
from models.utils import ( | |
AverageTimer, | |
VideoStreamer, | |
make_matching_plot_fast, | |
frame2tensor, | |
) | |
torch.set_grad_enabled(False) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser( | |
description="SuperGlue demo", | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter, | |
) | |
parser.add_argument( | |
"--input", | |
type=str, | |
default="0", | |
help="ID of a USB webcam, URL of an IP camera, " | |
"or path to an image directory or movie file", | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default=None, | |
help="Directory where to write output frames (If None, no output)", | |
) | |
parser.add_argument( | |
"--image_glob", | |
type=str, | |
nargs="+", | |
default=["*.png", "*.jpg", "*.jpeg"], | |
help="Glob if a directory of images is specified", | |
) | |
parser.add_argument( | |
"--skip", | |
type=int, | |
default=1, | |
help="Images to skip if input is a movie or directory", | |
) | |
parser.add_argument( | |
"--max_length", | |
type=int, | |
default=1000000, | |
help="Maximum length if input is a movie or directory", | |
) | |
parser.add_argument( | |
"--resize", | |
type=int, | |
nargs="+", | |
default=[640, 480], | |
help="Resize the input image before running inference. If two numbers, " | |
"resize to the exact dimensions, if one number, resize the max " | |
"dimension, if -1, do not resize", | |
) | |
parser.add_argument( | |
"--superglue", | |
choices={"indoor", "outdoor"}, | |
default="indoor", | |
help="SuperGlue weights", | |
) | |
parser.add_argument( | |
"--max_keypoints", | |
type=int, | |
default=-1, | |
help="Maximum number of keypoints detected by Superpoint" | |
" ('-1' keeps all keypoints)", | |
) | |
parser.add_argument( | |
"--keypoint_threshold", | |
type=float, | |
default=0.005, | |
help="SuperPoint keypoint detector confidence threshold", | |
) | |
parser.add_argument( | |
"--nms_radius", | |
type=int, | |
default=4, | |
help="SuperPoint Non Maximum Suppression (NMS) radius" " (Must be positive)", | |
) | |
parser.add_argument( | |
"--sinkhorn_iterations", | |
type=int, | |
default=20, | |
help="Number of Sinkhorn iterations performed by SuperGlue", | |
) | |
parser.add_argument( | |
"--match_threshold", type=float, default=0.2, help="SuperGlue match threshold" | |
) | |
parser.add_argument( | |
"--show_keypoints", action="store_true", help="Show the detected keypoints" | |
) | |
parser.add_argument( | |
"--no_display", | |
action="store_true", | |
help="Do not display images to screen. Useful if running remotely", | |
) | |
parser.add_argument( | |
"--force_cpu", action="store_true", help="Force pytorch to run in CPU mode." | |
) | |
opt = parser.parse_args() | |
print(opt) | |
if len(opt.resize) == 2 and opt.resize[1] == -1: | |
opt.resize = opt.resize[0:1] | |
if len(opt.resize) == 2: | |
print("Will resize to {}x{} (WxH)".format(opt.resize[0], opt.resize[1])) | |
elif len(opt.resize) == 1 and opt.resize[0] > 0: | |
print("Will resize max dimension to {}".format(opt.resize[0])) | |
elif len(opt.resize) == 1: | |
print("Will not resize images") | |
else: | |
raise ValueError("Cannot specify more than two integers for --resize") | |
device = "cuda" if torch.cuda.is_available() and not opt.force_cpu else "cpu" | |
print('Running inference on device "{}"'.format(device)) | |
config = { | |
"superpoint": { | |
"nms_radius": opt.nms_radius, | |
"keypoint_threshold": opt.keypoint_threshold, | |
"max_keypoints": opt.max_keypoints, | |
}, | |
"superglue": { | |
"weights": opt.superglue, | |
"sinkhorn_iterations": opt.sinkhorn_iterations, | |
"match_threshold": opt.match_threshold, | |
}, | |
} | |
matching = Matching(config).eval().to(device) | |
keys = ["keypoints", "scores", "descriptors"] | |
vs = VideoStreamer(opt.input, opt.resize, opt.skip, opt.image_glob, opt.max_length) | |
frame, ret = vs.next_frame() | |
assert ret, "Error when reading the first frame (try different --input?)" | |
frame_tensor = frame2tensor(frame, device) | |
last_data = matching.superpoint({"image": frame_tensor}) | |
last_data = {k + "0": last_data[k] for k in keys} | |
last_data["image0"] = frame_tensor | |
last_frame = frame | |
last_image_id = 0 | |
if opt.output_dir is not None: | |
print("==> Will write outputs to {}".format(opt.output_dir)) | |
Path(opt.output_dir).mkdir(exist_ok=True) | |
# Create a window to display the demo. | |
if not opt.no_display: | |
cv2.namedWindow("SuperGlue matches", cv2.WINDOW_NORMAL) | |
cv2.resizeWindow("SuperGlue matches", 640 * 2, 480) | |
else: | |
print("Skipping visualization, will not show a GUI.") | |
# Print the keyboard help menu. | |
print( | |
"==> Keyboard control:\n" | |
"\tn: select the current frame as the anchor\n" | |
"\te/r: increase/decrease the keypoint confidence threshold\n" | |
"\td/f: increase/decrease the match filtering threshold\n" | |
"\tk: toggle the visualization of keypoints\n" | |
"\tq: quit" | |
) | |
timer = AverageTimer() | |
while True: | |
frame, ret = vs.next_frame() | |
if not ret: | |
print("Finished demo_superglue.py") | |
break | |
timer.update("data") | |
stem0, stem1 = last_image_id, vs.i - 1 | |
frame_tensor = frame2tensor(frame, device) | |
pred = matching({**last_data, "image1": frame_tensor}) | |
kpts0 = last_data["keypoints0"][0].cpu().numpy() | |
kpts1 = pred["keypoints1"][0].cpu().numpy() | |
matches = pred["matches0"][0].cpu().numpy() | |
confidence = pred["matching_scores0"][0].cpu().numpy() | |
timer.update("forward") | |
valid = matches > -1 | |
mkpts0 = kpts0[valid] | |
mkpts1 = kpts1[matches[valid]] | |
color = cm.jet(confidence[valid]) | |
text = [ | |
"SuperGlue", | |
"Keypoints: {}:{}".format(len(kpts0), len(kpts1)), | |
"Matches: {}".format(len(mkpts0)), | |
] | |
k_thresh = matching.superpoint.config["keypoint_threshold"] | |
m_thresh = matching.superglue.config["match_threshold"] | |
small_text = [ | |
"Keypoint Threshold: {:.4f}".format(k_thresh), | |
"Match Threshold: {:.2f}".format(m_thresh), | |
"Image Pair: {:06}:{:06}".format(stem0, stem1), | |
] | |
out = make_matching_plot_fast( | |
last_frame, | |
frame, | |
kpts0, | |
kpts1, | |
mkpts0, | |
mkpts1, | |
color, | |
text, | |
path=None, | |
show_keypoints=opt.show_keypoints, | |
small_text=small_text, | |
) | |
if not opt.no_display: | |
cv2.imshow("SuperGlue matches", out) | |
key = chr(cv2.waitKey(1) & 0xFF) | |
if key == "q": | |
vs.cleanup() | |
print("Exiting (via q) demo_superglue.py") | |
break | |
elif key == "n": # set the current frame as anchor | |
last_data = {k + "0": pred[k + "1"] for k in keys} | |
last_data["image0"] = frame_tensor | |
last_frame = frame | |
last_image_id = vs.i - 1 | |
elif key in ["e", "r"]: | |
# Increase/decrease keypoint threshold by 10% each keypress. | |
d = 0.1 * (-1 if key == "e" else 1) | |
matching.superpoint.config["keypoint_threshold"] = min( | |
max( | |
0.0001, | |
matching.superpoint.config["keypoint_threshold"] * (1 + d), | |
), | |
1, | |
) | |
print( | |
"\nChanged the keypoint threshold to {:.4f}".format( | |
matching.superpoint.config["keypoint_threshold"] | |
) | |
) | |
elif key in ["d", "f"]: | |
# Increase/decrease match threshold by 0.05 each keypress. | |
d = 0.05 * (-1 if key == "d" else 1) | |
matching.superglue.config["match_threshold"] = min( | |
max(0.05, matching.superglue.config["match_threshold"] + d), 0.95 | |
) | |
print( | |
"\nChanged the match threshold to {:.2f}".format( | |
matching.superglue.config["match_threshold"] | |
) | |
) | |
elif key == "k": | |
opt.show_keypoints = not opt.show_keypoints | |
timer.update("viz") | |
timer.print() | |
if opt.output_dir is not None: | |
# stem = 'matches_{:06}_{:06}'.format(last_image_id, vs.i-1) | |
stem = "matches_{:06}_{:06}".format(stem0, stem1) | |
out_file = str(Path(opt.output_dir, stem + ".png")) | |
print("\nWriting image to {}".format(out_file)) | |
cv2.imwrite(out_file, out) | |
cv2.destroyAllWindows() | |
vs.cleanup() | |