Spaces:
Running
Running
Vincentqyw
commited on
Commit
·
8e76240
1
Parent(s):
6cb641c
update: default params
Browse files- app.py +72 -54
- common/utils.py +35 -26
- common/viz.py +1 -345
- style.css +1 -0
app.py
CHANGED
@@ -2,10 +2,18 @@ import argparse
|
|
2 |
import gradio as gr
|
3 |
from common.utils import (
|
4 |
matcher_zoo,
|
|
|
5 |
change_estimate_geom,
|
6 |
run_matching,
|
7 |
-
ransac_zoo,
|
8 |
gen_examples,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
)
|
10 |
|
11 |
DESCRIPTION = """
|
@@ -21,58 +29,66 @@ This Space demonstrates [Image Matching WebUI](https://github.com/Vincentqyw/ima
|
|
21 |
|
22 |
|
23 |
def ui_change_imagebox(choice):
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
-
def ui_reset_state(
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
ransac_method="RANSAC",
|
36 |
-
ransac_reproj_threshold=8,
|
37 |
-
ransac_confidence=0.999,
|
38 |
-
ransac_max_iter=10000,
|
39 |
-
choice_estimate_geom="Homography",
|
40 |
-
):
|
41 |
-
match_threshold = 0.2
|
42 |
-
extract_max_keypoints = 1000
|
43 |
-
keypoint_threshold = 0.015
|
44 |
-
key = list(matcher_zoo.keys())[0]
|
45 |
-
image0 = None
|
46 |
-
image1 = None
|
47 |
-
# enable_ransac = False
|
48 |
return (
|
49 |
-
image0
|
50 |
-
image1
|
51 |
-
|
52 |
-
|
53 |
-
keypoint_threshold
|
54 |
-
key,
|
55 |
-
ui_change_imagebox("upload"),
|
56 |
-
ui_change_imagebox("upload"),
|
57 |
-
"upload",
|
58 |
None, # keypoints
|
59 |
None, # raw matches
|
60 |
None, # ransac matches
|
61 |
-
{},
|
62 |
-
{},
|
63 |
-
None,
|
64 |
-
{},
|
65 |
-
#
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
"Homography",
|
71 |
)
|
72 |
|
73 |
|
74 |
# "footer {visibility: hidden}"
|
75 |
def run(config):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
with gr.Blocks(css="style.css") as app:
|
77 |
gr.Markdown(DESCRIPTION)
|
78 |
|
@@ -94,21 +110,21 @@ def run(config):
|
|
94 |
input_image0 = gr.Image(
|
95 |
label="Image 0",
|
96 |
type="numpy",
|
97 |
-
interactive=True,
|
98 |
image_mode="RGB",
|
|
|
|
|
99 |
)
|
100 |
input_image1 = gr.Image(
|
101 |
label="Image 1",
|
102 |
type="numpy",
|
103 |
-
interactive=True,
|
104 |
image_mode="RGB",
|
|
|
|
|
105 |
)
|
106 |
|
107 |
with gr.Row():
|
108 |
button_reset = gr.Button(value="Reset")
|
109 |
-
button_run = gr.Button(
|
110 |
-
value="Run Match", variant="primary"
|
111 |
-
)
|
112 |
|
113 |
with gr.Accordion("Advanced Setting", open=False):
|
114 |
with gr.Accordion("Matching Setting", open=True):
|
@@ -153,7 +169,7 @@ def run(config):
|
|
153 |
# enable_ransac = gr.Checkbox(label="Enable RANSAC")
|
154 |
ransac_method = gr.Dropdown(
|
155 |
choices=ransac_zoo.keys(),
|
156 |
-
value=
|
157 |
label="RANSAC Method",
|
158 |
interactive=True,
|
159 |
)
|
@@ -185,7 +201,7 @@ def run(config):
|
|
185 |
choice_estimate_geom = gr.Radio(
|
186 |
["Fundamental", "Homography"],
|
187 |
label="Reconstruct Geometry",
|
188 |
-
value=
|
189 |
)
|
190 |
|
191 |
# with gr.Column():
|
@@ -197,7 +213,6 @@ def run(config):
|
|
197 |
match_setting_max_features,
|
198 |
detect_keypoints_threshold,
|
199 |
matcher_list,
|
200 |
-
# enable_ransac,
|
201 |
ransac_method,
|
202 |
ransac_reproj_threshold,
|
203 |
ransac_confidence,
|
@@ -243,9 +258,13 @@ def run(config):
|
|
243 |
output_wrapped = gr.Image(
|
244 |
label="Wrapped Pair", type="numpy"
|
245 |
)
|
246 |
-
with gr.Accordion(
|
247 |
-
|
248 |
-
|
|
|
|
|
|
|
|
|
249 |
# callbacks
|
250 |
match_image_src.change(
|
251 |
fn=ui_change_imagebox,
|
@@ -289,7 +308,6 @@ def run(config):
|
|
289 |
matcher_info,
|
290 |
output_wrapped,
|
291 |
geometry_result,
|
292 |
-
# enable_ransac,
|
293 |
ransac_method,
|
294 |
ransac_reproj_threshold,
|
295 |
ransac_confidence,
|
|
|
2 |
import gradio as gr
|
3 |
from common.utils import (
|
4 |
matcher_zoo,
|
5 |
+
ransac_zoo,
|
6 |
change_estimate_geom,
|
7 |
run_matching,
|
|
|
8 |
gen_examples,
|
9 |
+
DEFAULT_RANSAC_METHOD,
|
10 |
+
DEFAULT_SETTING_GEOMETRY,
|
11 |
+
DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
12 |
+
DEFAULT_RANSAC_CONFIDENCE,
|
13 |
+
DEFAULT_RANSAC_MAX_ITER,
|
14 |
+
DEFAULT_MATCHING_THRESHOLD,
|
15 |
+
DEFAULT_SETTING_MAX_FEATURES,
|
16 |
+
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD,
|
17 |
)
|
18 |
|
19 |
DESCRIPTION = """
|
|
|
29 |
|
30 |
|
31 |
def ui_change_imagebox(choice):
|
32 |
+
"""
|
33 |
+
Updates the image box with the given choice.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
choice (list): The list of image sources to be displayed in the image box.
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
dict: A dictionary containing the updated value, sources, and type for the image box.
|
40 |
+
"""
|
41 |
+
return {
|
42 |
+
"value": None, # The updated value of the image box
|
43 |
+
"sources": choice, # The list of image sources to be displayed
|
44 |
+
"__type__": "update", # The type of update for the image box
|
45 |
+
}
|
46 |
|
47 |
|
48 |
+
def ui_reset_state(*args):
|
49 |
+
"""
|
50 |
+
Reset the state of the UI.
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
tuple: A tuple containing the initial values for the UI state.
|
54 |
+
"""
|
55 |
+
key = list(matcher_zoo.keys())[0] # Get the first key from matcher_zoo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
return (
|
57 |
+
None, # image0
|
58 |
+
None, # image1
|
59 |
+
DEFAULT_MATCHING_THRESHOLD, # matching_threshold
|
60 |
+
DEFAULT_SETTING_MAX_FEATURES, # max_features
|
61 |
+
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD, # keypoint_threshold
|
62 |
+
key, # matcher
|
63 |
+
ui_change_imagebox("upload"), # input image0
|
64 |
+
ui_change_imagebox("upload"), # input image1
|
65 |
+
"upload", # match_image_src
|
66 |
None, # keypoints
|
67 |
None, # raw matches
|
68 |
None, # ransac matches
|
69 |
+
{}, # matches result info
|
70 |
+
{}, # matcher config
|
71 |
+
None, # warped image
|
72 |
+
{}, # geometry result
|
73 |
+
DEFAULT_RANSAC_METHOD, # ransac_method
|
74 |
+
DEFAULT_RANSAC_REPROJ_THRESHOLD, # ransac_reproj_threshold
|
75 |
+
DEFAULT_RANSAC_CONFIDENCE, # ransac_confidence
|
76 |
+
DEFAULT_RANSAC_MAX_ITER, # ransac_max_iter
|
77 |
+
DEFAULT_SETTING_GEOMETRY, # geometry
|
|
|
78 |
)
|
79 |
|
80 |
|
81 |
# "footer {visibility: hidden}"
|
82 |
def run(config):
|
83 |
+
"""
|
84 |
+
Runs the application.
|
85 |
+
|
86 |
+
Args:
|
87 |
+
config (dict): A dictionary containing configuration parameters for the application.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
None
|
91 |
+
"""
|
92 |
with gr.Blocks(css="style.css") as app:
|
93 |
gr.Markdown(DESCRIPTION)
|
94 |
|
|
|
110 |
input_image0 = gr.Image(
|
111 |
label="Image 0",
|
112 |
type="numpy",
|
|
|
113 |
image_mode="RGB",
|
114 |
+
height=300,
|
115 |
+
interactive=True,
|
116 |
)
|
117 |
input_image1 = gr.Image(
|
118 |
label="Image 1",
|
119 |
type="numpy",
|
|
|
120 |
image_mode="RGB",
|
121 |
+
height=300,
|
122 |
+
interactive=True,
|
123 |
)
|
124 |
|
125 |
with gr.Row():
|
126 |
button_reset = gr.Button(value="Reset")
|
127 |
+
button_run = gr.Button(value="Run Match", variant="primary")
|
|
|
|
|
128 |
|
129 |
with gr.Accordion("Advanced Setting", open=False):
|
130 |
with gr.Accordion("Matching Setting", open=True):
|
|
|
169 |
# enable_ransac = gr.Checkbox(label="Enable RANSAC")
|
170 |
ransac_method = gr.Dropdown(
|
171 |
choices=ransac_zoo.keys(),
|
172 |
+
value=DEFAULT_RANSAC_METHOD,
|
173 |
label="RANSAC Method",
|
174 |
interactive=True,
|
175 |
)
|
|
|
201 |
choice_estimate_geom = gr.Radio(
|
202 |
["Fundamental", "Homography"],
|
203 |
label="Reconstruct Geometry",
|
204 |
+
value=DEFAULT_SETTING_GEOMETRY,
|
205 |
)
|
206 |
|
207 |
# with gr.Column():
|
|
|
213 |
match_setting_max_features,
|
214 |
detect_keypoints_threshold,
|
215 |
matcher_list,
|
|
|
216 |
ransac_method,
|
217 |
ransac_reproj_threshold,
|
218 |
ransac_confidence,
|
|
|
258 |
output_wrapped = gr.Image(
|
259 |
label="Wrapped Pair", type="numpy"
|
260 |
)
|
261 |
+
with gr.Accordion(
|
262 |
+
"Open for More: Geometry info", open=False
|
263 |
+
):
|
264 |
+
geometry_result = gr.JSON(
|
265 |
+
label="Reconstructed Geometry"
|
266 |
+
)
|
267 |
+
|
268 |
# callbacks
|
269 |
match_image_src.change(
|
270 |
fn=ui_change_imagebox,
|
|
|
308 |
matcher_info,
|
309 |
output_wrapped,
|
310 |
geometry_result,
|
|
|
311 |
ransac_method,
|
312 |
ransac_reproj_threshold,
|
313 |
ransac_confidence,
|
common/utils.py
CHANGED
@@ -13,6 +13,18 @@ from .viz import draw_matches, fig2im, plot_images, plot_color_line_matches
|
|
13 |
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def get_model(match_conf):
|
18 |
Model = dynamic_load(matchers, match_conf["model"]["name"])
|
@@ -52,14 +64,13 @@ def gen_examples():
|
|
52 |
# image pair path
|
53 |
path = "datasets/sacre_coeur/mapping"
|
54 |
pairs = gen_images_pairs(path, len(example_matchers))
|
55 |
-
match_setting_threshold =
|
56 |
-
match_setting_max_features =
|
57 |
-
detect_keypoints_threshold =
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
ransac_max_iter = 10000
|
63 |
input_lists = []
|
64 |
for pair, mt in zip(pairs, example_matchers):
|
65 |
input_lists.append(
|
@@ -82,10 +93,10 @@ def gen_examples():
|
|
82 |
|
83 |
def filter_matches(
|
84 |
pred,
|
85 |
-
ransac_method=
|
86 |
-
ransac_reproj_threshold=
|
87 |
-
ransac_confidence=
|
88 |
-
ransac_max_iter=
|
89 |
):
|
90 |
mkpts0 = None
|
91 |
mkpts1 = None
|
@@ -106,9 +117,9 @@ def filter_matches(
|
|
106 |
if mkpts0 is None or mkpts0 is None:
|
107 |
return pred
|
108 |
if ransac_method not in ransac_zoo.keys():
|
109 |
-
ransac_method =
|
110 |
|
111 |
-
if len(mkpts0) <
|
112 |
return pred
|
113 |
H, mask = cv2.findHomography(
|
114 |
mkpts0,
|
@@ -132,10 +143,10 @@ def filter_matches(
|
|
132 |
|
133 |
def compute_geom(
|
134 |
pred,
|
135 |
-
ransac_method=
|
136 |
-
ransac_reproj_threshold=
|
137 |
-
ransac_confidence=
|
138 |
-
ransac_max_iter=
|
139 |
) -> dict:
|
140 |
mkpts0 = None
|
141 |
mkpts1 = None
|
@@ -152,7 +163,7 @@ def compute_geom(
|
|
152 |
mkpts1 = pred["line_keypoints1_orig"]
|
153 |
|
154 |
if mkpts0 is not None and mkpts1 is not None:
|
155 |
-
if len(mkpts0) <
|
156 |
return {}
|
157 |
h1, w1, _ = pred["image0_orig"].shape
|
158 |
geo_info = {}
|
@@ -309,12 +320,11 @@ def run_matching(
|
|
309 |
extract_max_keypoints,
|
310 |
keypoint_threshold,
|
311 |
key,
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
choice_estimate_geom="Homography",
|
318 |
):
|
319 |
# image0 and image1 is RGB mode
|
320 |
if image0 is None or image1 is None:
|
@@ -420,7 +430,6 @@ def run_matching(
|
|
420 |
"geom_info": geom_info,
|
421 |
},
|
422 |
output_wrapped,
|
423 |
-
# geometry_result,
|
424 |
)
|
425 |
|
426 |
|
|
|
13 |
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
+
DEFAULT_SETTING_THRESHOLD = 0.1
|
17 |
+
DEFAULT_SETTING_MAX_FEATURES = 2000
|
18 |
+
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
|
19 |
+
DEFAULT_ENABLE_RANSAC = True
|
20 |
+
DEFAULT_RANSAC_METHOD = "USAC_MAGSAC"
|
21 |
+
DEFAULT_RANSAC_REPROJ_THRESHOLD = 8
|
22 |
+
DEFAULT_RANSAC_CONFIDENCE = 0.999
|
23 |
+
DEFAULT_RANSAC_MAX_ITER = 10000
|
24 |
+
DEFAULT_MIN_NUM_MATCHES = 4
|
25 |
+
DEFAULT_MATCHING_THRESHOLD = 0.2
|
26 |
+
DEFAULT_SETTING_GEOMETRY = "Homography"
|
27 |
+
|
28 |
|
29 |
def get_model(match_conf):
|
30 |
Model = dynamic_load(matchers, match_conf["model"]["name"])
|
|
|
64 |
# image pair path
|
65 |
path = "datasets/sacre_coeur/mapping"
|
66 |
pairs = gen_images_pairs(path, len(example_matchers))
|
67 |
+
match_setting_threshold = DEFAULT_SETTING_THRESHOLD
|
68 |
+
match_setting_max_features = DEFAULT_SETTING_MAX_FEATURES
|
69 |
+
detect_keypoints_threshold = DEFAULT_DEFAULT_KEYPOINT_THRESHOLD
|
70 |
+
ransac_method = DEFAULT_RANSAC_METHOD
|
71 |
+
ransac_reproj_threshold = DEFAULT_RANSAC_REPROJ_THRESHOLD
|
72 |
+
ransac_confidence = DEFAULT_RANSAC_CONFIDENCE
|
73 |
+
ransac_max_iter = DEFAULT_RANSAC_MAX_ITER
|
|
|
74 |
input_lists = []
|
75 |
for pair, mt in zip(pairs, example_matchers):
|
76 |
input_lists.append(
|
|
|
93 |
|
94 |
def filter_matches(
|
95 |
pred,
|
96 |
+
ransac_method=DEFAULT_RANSAC_METHOD,
|
97 |
+
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
98 |
+
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
|
99 |
+
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
|
100 |
):
|
101 |
mkpts0 = None
|
102 |
mkpts1 = None
|
|
|
117 |
if mkpts0 is None or mkpts0 is None:
|
118 |
return pred
|
119 |
if ransac_method not in ransac_zoo.keys():
|
120 |
+
ransac_method = DEFAULT_RANSAC_METHOD
|
121 |
|
122 |
+
if len(mkpts0) < DEFAULT_MIN_NUM_MATCHES:
|
123 |
return pred
|
124 |
H, mask = cv2.findHomography(
|
125 |
mkpts0,
|
|
|
143 |
|
144 |
def compute_geom(
|
145 |
pred,
|
146 |
+
ransac_method=DEFAULT_RANSAC_METHOD,
|
147 |
+
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
148 |
+
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
|
149 |
+
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
|
150 |
) -> dict:
|
151 |
mkpts0 = None
|
152 |
mkpts1 = None
|
|
|
163 |
mkpts1 = pred["line_keypoints1_orig"]
|
164 |
|
165 |
if mkpts0 is not None and mkpts1 is not None:
|
166 |
+
if len(mkpts0) < 2 * DEFAULT_MIN_NUM_MATCHES:
|
167 |
return {}
|
168 |
h1, w1, _ = pred["image0_orig"].shape
|
169 |
geo_info = {}
|
|
|
320 |
extract_max_keypoints,
|
321 |
keypoint_threshold,
|
322 |
key,
|
323 |
+
ransac_method=DEFAULT_RANSAC_METHOD,
|
324 |
+
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
|
325 |
+
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
|
326 |
+
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
|
327 |
+
choice_estimate_geom=DEFAULT_SETTING_GEOMETRY,
|
|
|
328 |
):
|
329 |
# image0 and image1 is RGB mode
|
330 |
if image0 is None or image1 is None:
|
|
|
430 |
"geom_info": geom_info,
|
431 |
},
|
432 |
output_wrapped,
|
|
|
433 |
)
|
434 |
|
435 |
|
common/viz.py
CHANGED
@@ -1,25 +1,9 @@
|
|
1 |
-
import bisect
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
4 |
-
import matplotlib
|
5 |
-
import matplotlib.cm as cm
|
6 |
-
from PIL import Image
|
7 |
-
import torch.nn.functional as F
|
8 |
-
import torch
|
9 |
import seaborn as sns
|
10 |
|
11 |
|
12 |
-
def _compute_conf_thresh(data):
|
13 |
-
dataset_name = data["dataset_name"][0].lower()
|
14 |
-
if dataset_name == "scannet":
|
15 |
-
thr = 5e-4
|
16 |
-
elif dataset_name == "megadepth":
|
17 |
-
thr = 1e-4
|
18 |
-
else:
|
19 |
-
raise ValueError(f"Unknown dataset: {dataset_name}")
|
20 |
-
return thr
|
21 |
-
|
22 |
-
|
23 |
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=5, pad=0.5):
|
24 |
"""Plot a set of images horizontally.
|
25 |
Args:
|
@@ -172,95 +156,6 @@ def make_matching_figure(
|
|
172 |
return fig
|
173 |
|
174 |
|
175 |
-
def _make_evaluation_figure(data, b_id, alpha="dynamic"):
|
176 |
-
b_mask = data["m_bids"] == b_id
|
177 |
-
conf_thr = _compute_conf_thresh(data)
|
178 |
-
|
179 |
-
img0 = (
|
180 |
-
(data["image0"][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
|
181 |
-
)
|
182 |
-
img1 = (
|
183 |
-
(data["image1"][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
|
184 |
-
)
|
185 |
-
kpts0 = data["mkpts0_f"][b_mask].cpu().numpy()
|
186 |
-
kpts1 = data["mkpts1_f"][b_mask].cpu().numpy()
|
187 |
-
|
188 |
-
# for megadepth, we visualize matches on the resized image
|
189 |
-
if "scale0" in data:
|
190 |
-
kpts0 = kpts0 / data["scale0"][b_id].cpu().numpy()[[1, 0]]
|
191 |
-
kpts1 = kpts1 / data["scale1"][b_id].cpu().numpy()[[1, 0]]
|
192 |
-
|
193 |
-
epi_errs = data["epi_errs"][b_mask].cpu().numpy()
|
194 |
-
correct_mask = epi_errs < conf_thr
|
195 |
-
precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
|
196 |
-
n_correct = np.sum(correct_mask)
|
197 |
-
n_gt_matches = int(data["conf_matrix_gt"][b_id].sum().cpu())
|
198 |
-
recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches)
|
199 |
-
# recall might be larger than 1, since the calculation of conf_matrix_gt
|
200 |
-
# uses groundtruth depths and camera poses, but epipolar distance is used here.
|
201 |
-
|
202 |
-
# matching info
|
203 |
-
if alpha == "dynamic":
|
204 |
-
alpha = dynamic_alpha(len(correct_mask))
|
205 |
-
color = error_colormap(epi_errs, conf_thr, alpha=alpha)
|
206 |
-
|
207 |
-
text = [
|
208 |
-
f"#Matches {len(kpts0)}",
|
209 |
-
f"Precision({conf_thr:.2e}) ({100 * precision:.1f}%):"
|
210 |
-
f" {n_correct}/{len(kpts0)}",
|
211 |
-
f"Recall({conf_thr:.2e}) ({100 * recall:.1f}%):"
|
212 |
-
f" {n_correct}/{n_gt_matches}",
|
213 |
-
]
|
214 |
-
|
215 |
-
# make the figure
|
216 |
-
figure = make_matching_figure(img0, img1, kpts0, kpts1, color, text=text)
|
217 |
-
return figure
|
218 |
-
|
219 |
-
|
220 |
-
def _make_confidence_figure(data, b_id):
|
221 |
-
# TODO: Implement confidence figure
|
222 |
-
raise NotImplementedError()
|
223 |
-
|
224 |
-
|
225 |
-
def make_matching_figures(data, config, mode="evaluation"):
|
226 |
-
"""Make matching figures for a batch.
|
227 |
-
|
228 |
-
Args:
|
229 |
-
data (Dict): a batch updated by PL_LoFTR.
|
230 |
-
config (Dict): matcher config
|
231 |
-
Returns:
|
232 |
-
figures (Dict[str, List[plt.figure]]
|
233 |
-
"""
|
234 |
-
assert mode in ["evaluation", "confidence"] # 'confidence'
|
235 |
-
figures = {mode: []}
|
236 |
-
for b_id in range(data["image0"].size(0)):
|
237 |
-
if mode == "evaluation":
|
238 |
-
fig = _make_evaluation_figure(
|
239 |
-
data, b_id, alpha=config.TRAINER.PLOT_MATCHES_ALPHA
|
240 |
-
)
|
241 |
-
elif mode == "confidence":
|
242 |
-
fig = _make_confidence_figure(data, b_id)
|
243 |
-
else:
|
244 |
-
raise ValueError(f"Unknown plot mode: {mode}")
|
245 |
-
figures[mode].append(fig)
|
246 |
-
return figures
|
247 |
-
|
248 |
-
|
249 |
-
def dynamic_alpha(
|
250 |
-
n_matches, milestones=[0, 300, 1000, 2000], alphas=[1.0, 0.8, 0.4, 0.2]
|
251 |
-
):
|
252 |
-
if n_matches == 0:
|
253 |
-
return 1.0
|
254 |
-
ranges = list(zip(alphas, alphas[1:] + [None]))
|
255 |
-
loc = bisect.bisect_right(milestones, n_matches) - 1
|
256 |
-
_range = ranges[loc]
|
257 |
-
if _range[1] is None:
|
258 |
-
return _range[0]
|
259 |
-
return _range[1] + (milestones[loc + 1] - n_matches) / (
|
260 |
-
milestones[loc + 1] - milestones[loc]
|
261 |
-
) * (_range[0] - _range[1])
|
262 |
-
|
263 |
-
|
264 |
def error_colormap(err, thr, alpha=1.0):
|
265 |
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
|
266 |
x = 1 - np.clip(err / (thr * 2), 0, 1)
|
@@ -278,245 +173,6 @@ color_map = np.arange(100)
|
|
278 |
np.random.shuffle(color_map)
|
279 |
|
280 |
|
281 |
-
def draw_topics(
|
282 |
-
data,
|
283 |
-
img0,
|
284 |
-
img1,
|
285 |
-
saved_folder="viz_topics",
|
286 |
-
show_n_topics=8,
|
287 |
-
saved_name=None,
|
288 |
-
):
|
289 |
-
topic0, topic1 = data["topic_matrix"]["img0"], data["topic_matrix"]["img1"]
|
290 |
-
hw0_c, hw1_c = data["hw0_c"], data["hw1_c"]
|
291 |
-
hw0_i, hw1_i = data["hw0_i"], data["hw1_i"]
|
292 |
-
# print(hw0_i, hw1_i)
|
293 |
-
scale0, scale1 = hw0_i[0] // hw0_c[0], hw1_i[0] // hw1_c[0]
|
294 |
-
if "scale0" in data:
|
295 |
-
scale0 *= data["scale0"][0]
|
296 |
-
else:
|
297 |
-
scale0 = (scale0, scale0)
|
298 |
-
if "scale1" in data:
|
299 |
-
scale1 *= data["scale1"][0]
|
300 |
-
else:
|
301 |
-
scale1 = (scale1, scale1)
|
302 |
-
|
303 |
-
n_topics = topic0.shape[-1]
|
304 |
-
# mask0_nonzero = topic0[0].sum(dim=-1, keepdim=True) > 0
|
305 |
-
# mask1_nonzero = topic1[0].sum(dim=-1, keepdim=True) > 0
|
306 |
-
theta0 = topic0[0].sum(dim=0)
|
307 |
-
theta0 /= theta0.sum().float()
|
308 |
-
theta1 = topic1[0].sum(dim=0)
|
309 |
-
theta1 /= theta1.sum().float()
|
310 |
-
# top_topic0 = torch.argsort(theta0, descending=True)[:show_n_topics]
|
311 |
-
# top_topic1 = torch.argsort(theta1, descending=True)[:show_n_topics]
|
312 |
-
top_topics = torch.argsort(theta0 * theta1, descending=True)[:show_n_topics]
|
313 |
-
# print(sum_topic0, sum_topic1)
|
314 |
-
|
315 |
-
topic0 = topic0[0].argmax(
|
316 |
-
dim=-1, keepdim=True
|
317 |
-
) # .float() / (n_topics - 1) #* 255 + 1 #
|
318 |
-
# topic0[~mask0_nonzero] = -1
|
319 |
-
topic1 = topic1[0].argmax(
|
320 |
-
dim=-1, keepdim=True
|
321 |
-
) # .float() / (n_topics - 1) #* 255 + 1
|
322 |
-
# topic1[~mask1_nonzero] = -1
|
323 |
-
label_img0, label_img1 = (
|
324 |
-
torch.zeros_like(topic0) - 1,
|
325 |
-
torch.zeros_like(topic1) - 1,
|
326 |
-
)
|
327 |
-
for i, k in enumerate(top_topics):
|
328 |
-
label_img0[topic0 == k] = color_map[k]
|
329 |
-
label_img1[topic1 == k] = color_map[k]
|
330 |
-
|
331 |
-
# print(hw0_c, scale0)
|
332 |
-
# print(hw1_c, scale1)
|
333 |
-
# map_topic0 = F.fold(label_img0.unsqueeze(0), hw0_i, kernel_size=scale0, stride=scale0)
|
334 |
-
map_topic0 = (
|
335 |
-
label_img0.float().view(hw0_c).cpu().numpy()
|
336 |
-
) # map_topic0.squeeze(0).squeeze(0).cpu().numpy()
|
337 |
-
map_topic0 = cv2.resize(
|
338 |
-
map_topic0, (int(hw0_c[1] * scale0[0]), int(hw0_c[0] * scale0[1]))
|
339 |
-
)
|
340 |
-
# map_topic1 = F.fold(label_img1.unsqueeze(0), hw1_i, kernel_size=scale1, stride=scale1)
|
341 |
-
map_topic1 = (
|
342 |
-
label_img1.float().view(hw1_c).cpu().numpy()
|
343 |
-
) # map_topic1.squeeze(0).squeeze(0).cpu().numpy()
|
344 |
-
map_topic1 = cv2.resize(
|
345 |
-
map_topic1, (int(hw1_c[1] * scale1[0]), int(hw1_c[0] * scale1[1]))
|
346 |
-
)
|
347 |
-
|
348 |
-
# show image0
|
349 |
-
if saved_name is None:
|
350 |
-
return map_topic0, map_topic1
|
351 |
-
|
352 |
-
if not os.path.exists(saved_folder):
|
353 |
-
os.makedirs(saved_folder)
|
354 |
-
path_saved_img0 = os.path.join(saved_folder, "{}_0.png".format(saved_name))
|
355 |
-
plt.imshow(img0)
|
356 |
-
masked_map_topic0 = np.ma.masked_where(map_topic0 < 0, map_topic0)
|
357 |
-
plt.imshow(
|
358 |
-
masked_map_topic0,
|
359 |
-
cmap=plt.cm.jet,
|
360 |
-
vmin=0,
|
361 |
-
vmax=n_topics - 1,
|
362 |
-
alpha=0.3,
|
363 |
-
interpolation="bilinear",
|
364 |
-
)
|
365 |
-
# plt.show()
|
366 |
-
plt.axis("off")
|
367 |
-
plt.savefig(path_saved_img0, bbox_inches="tight", pad_inches=0, dpi=250)
|
368 |
-
plt.close()
|
369 |
-
|
370 |
-
path_saved_img1 = os.path.join(saved_folder, "{}_1.png".format(saved_name))
|
371 |
-
plt.imshow(img1)
|
372 |
-
masked_map_topic1 = np.ma.masked_where(map_topic1 < 0, map_topic1)
|
373 |
-
plt.imshow(
|
374 |
-
masked_map_topic1,
|
375 |
-
cmap=plt.cm.jet,
|
376 |
-
vmin=0,
|
377 |
-
vmax=n_topics - 1,
|
378 |
-
alpha=0.3,
|
379 |
-
interpolation="bilinear",
|
380 |
-
)
|
381 |
-
plt.axis("off")
|
382 |
-
plt.savefig(path_saved_img1, bbox_inches="tight", pad_inches=0, dpi=250)
|
383 |
-
plt.close()
|
384 |
-
|
385 |
-
|
386 |
-
def draw_topicfm_demo(
|
387 |
-
data,
|
388 |
-
img0,
|
389 |
-
img1,
|
390 |
-
mkpts0,
|
391 |
-
mkpts1,
|
392 |
-
mcolor,
|
393 |
-
text,
|
394 |
-
show_n_topics=8,
|
395 |
-
topic_alpha=0.3,
|
396 |
-
margin=5,
|
397 |
-
path=None,
|
398 |
-
opencv_display=False,
|
399 |
-
opencv_title="",
|
400 |
-
):
|
401 |
-
topic_map0, topic_map1 = draw_topics(
|
402 |
-
data, img0, img1, show_n_topics=show_n_topics
|
403 |
-
)
|
404 |
-
|
405 |
-
mask_tm0, mask_tm1 = np.expand_dims(
|
406 |
-
topic_map0 >= 0, axis=-1
|
407 |
-
), np.expand_dims(topic_map1 >= 0, axis=-1)
|
408 |
-
|
409 |
-
topic_cm0, topic_cm1 = cm.jet(topic_map0 / 99.0), cm.jet(topic_map1 / 99.0)
|
410 |
-
topic_cm0 = cv2.cvtColor(
|
411 |
-
topic_cm0[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR
|
412 |
-
)
|
413 |
-
topic_cm1 = cv2.cvtColor(
|
414 |
-
topic_cm1[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR
|
415 |
-
)
|
416 |
-
overlay0 = (mask_tm0 * topic_cm0 + (1 - mask_tm0) * img0).astype(np.float32)
|
417 |
-
overlay1 = (mask_tm1 * topic_cm1 + (1 - mask_tm1) * img1).astype(np.float32)
|
418 |
-
|
419 |
-
cv2.addWeighted(overlay0, topic_alpha, img0, 1 - topic_alpha, 0, overlay0)
|
420 |
-
cv2.addWeighted(overlay1, topic_alpha, img1, 1 - topic_alpha, 0, overlay1)
|
421 |
-
|
422 |
-
overlay0, overlay1 = (overlay0 * 255).astype(np.uint8), (
|
423 |
-
overlay1 * 255
|
424 |
-
).astype(np.uint8)
|
425 |
-
|
426 |
-
h0, w0 = img0.shape[:2]
|
427 |
-
h1, w1 = img1.shape[:2]
|
428 |
-
h, w = h0 * 2 + margin * 2, w0 * 2 + margin
|
429 |
-
out_fig = 255 * np.ones((h, w, 3), dtype=np.uint8)
|
430 |
-
out_fig[:h0, :w0] = overlay0
|
431 |
-
if h0 >= h1:
|
432 |
-
start = (h0 - h1) // 2
|
433 |
-
out_fig[
|
434 |
-
start : (start + h1), (w0 + margin) : (w0 + margin + w1)
|
435 |
-
] = overlay1
|
436 |
-
else:
|
437 |
-
start = (h1 - h0) // 2
|
438 |
-
out_fig[:h0, (w0 + margin) : (w0 + margin + w1)] = overlay1[
|
439 |
-
start : (start + h0)
|
440 |
-
]
|
441 |
-
|
442 |
-
step_h = h0 + margin * 2
|
443 |
-
out_fig[step_h : step_h + h0, :w0] = (img0 * 255).astype(np.uint8)
|
444 |
-
if h0 >= h1:
|
445 |
-
start = step_h + (h0 - h1) // 2
|
446 |
-
out_fig[start : start + h1, (w0 + margin) : (w0 + margin + w1)] = (
|
447 |
-
img1 * 255
|
448 |
-
).astype(np.uint8)
|
449 |
-
else:
|
450 |
-
start = (h1 - h0) // 2
|
451 |
-
out_fig[step_h : step_h + h0, (w0 + margin) : (w0 + margin + w1)] = (
|
452 |
-
img1[start : start + h0] * 255
|
453 |
-
).astype(np.uint8)
|
454 |
-
|
455 |
-
# draw matching lines, this is inspried from
|
456 |
-
# https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/master/models/utils.py
|
457 |
-
mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
|
458 |
-
mcolor = (np.array(mcolor[:, [2, 1, 0]]) * 255).astype(int)
|
459 |
-
|
460 |
-
for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, mcolor):
|
461 |
-
c = c.tolist()
|
462 |
-
cv2.line(
|
463 |
-
out_fig,
|
464 |
-
(x0, y0 + step_h),
|
465 |
-
(x1 + margin + w0, y1 + step_h + (h0 - h1) // 2),
|
466 |
-
color=c,
|
467 |
-
thickness=1,
|
468 |
-
lineType=cv2.LINE_AA,
|
469 |
-
)
|
470 |
-
# display line end-points as circles
|
471 |
-
cv2.circle(out_fig, (x0, y0 + step_h), 2, c, -1, lineType=cv2.LINE_AA)
|
472 |
-
cv2.circle(
|
473 |
-
out_fig,
|
474 |
-
(x1 + margin + w0, y1 + step_h + (h0 - h1) // 2),
|
475 |
-
2,
|
476 |
-
c,
|
477 |
-
-1,
|
478 |
-
lineType=cv2.LINE_AA,
|
479 |
-
)
|
480 |
-
|
481 |
-
# Scale factor for consistent visualization across scales.
|
482 |
-
sc = min(h / 960.0, 2.0)
|
483 |
-
|
484 |
-
# Big text.
|
485 |
-
Ht = int(30 * sc) # text height
|
486 |
-
txt_color_fg = (255, 255, 255)
|
487 |
-
txt_color_bg = (0, 0, 0)
|
488 |
-
for i, t in enumerate(text):
|
489 |
-
cv2.putText(
|
490 |
-
out_fig,
|
491 |
-
t,
|
492 |
-
(int(8 * sc), Ht + step_h * i),
|
493 |
-
cv2.FONT_HERSHEY_DUPLEX,
|
494 |
-
1.0 * sc,
|
495 |
-
txt_color_bg,
|
496 |
-
2,
|
497 |
-
cv2.LINE_AA,
|
498 |
-
)
|
499 |
-
cv2.putText(
|
500 |
-
out_fig,
|
501 |
-
t,
|
502 |
-
(int(8 * sc), Ht + step_h * i),
|
503 |
-
cv2.FONT_HERSHEY_DUPLEX,
|
504 |
-
1.0 * sc,
|
505 |
-
txt_color_fg,
|
506 |
-
1,
|
507 |
-
cv2.LINE_AA,
|
508 |
-
)
|
509 |
-
|
510 |
-
if path is not None:
|
511 |
-
cv2.imwrite(str(path), out_fig)
|
512 |
-
|
513 |
-
if opencv_display:
|
514 |
-
cv2.imshow(opencv_title, out_fig)
|
515 |
-
cv2.waitKey(1)
|
516 |
-
|
517 |
-
return out_fig
|
518 |
-
|
519 |
-
|
520 |
def fig2im(fig):
|
521 |
fig.canvas.draw()
|
522 |
w, h = fig.canvas.get_width_height()
|
|
|
|
|
1 |
import numpy as np
|
2 |
import matplotlib.pyplot as plt
|
3 |
+
import matplotlib
|
|
|
|
|
|
|
|
|
4 |
import seaborn as sns
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=5, pad=0.5):
|
8 |
"""Plot a set of images horizontally.
|
9 |
Args:
|
|
|
156 |
return fig
|
157 |
|
158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
def error_colormap(err, thr, alpha=1.0):
|
160 |
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
|
161 |
x = 1 - np.clip(err / (thr * 2), 0, 1)
|
|
|
173 |
np.random.shuffle(color_map)
|
174 |
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
def fig2im(fig):
|
177 |
fig.canvas.draw()
|
178 |
w, h = fig.canvas.get_width_height()
|
style.css
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
h1 {
|
2 |
text-align: center;
|
|
|
3 |
}
|
4 |
|
5 |
#duplicate-button {
|
|
|
1 |
h1 {
|
2 |
text-align: center;
|
3 |
+
display:block;
|
4 |
}
|
5 |
|
6 |
#duplicate-button {
|