import torch import torch.nn as nn from einops.einops import rearrange from .backbone import build_backbone from .modules import LocalFeatureTransformer, FinePreprocess, TopicFormer from .utils.coarse_matching import CoarseMatching from .utils.fine_matching import FineMatching class TopicFM(nn.Module): def __init__(self, config): super().__init__() # Misc self.config = config # Modules self.backbone = build_backbone(config) self.loftr_coarse = TopicFormer(config["coarse"]) self.coarse_matching = CoarseMatching(config["match_coarse"]) self.fine_preprocess = FinePreprocess(config) self.loftr_fine = LocalFeatureTransformer(config["fine"]) self.fine_matching = FineMatching() def forward(self, data): """ Update: data (dict): { 'image0': (torch.Tensor): (N, 1, H, W) 'image1': (torch.Tensor): (N, 1, H, W) 'mask0'(optional) : (torch.Tensor): (N, H, W) '0' indicates a padded position 'mask1'(optional) : (torch.Tensor): (N, H, W) } """ # 1. Local Feature CNN data.update( { "bs": data["image0"].size(0), "hw0_i": data["image0"].shape[2:], "hw1_i": data["image1"].shape[2:], } ) if data["hw0_i"] == data["hw1_i"]: # faster & better BN convergence feats_c, feats_f = self.backbone( torch.cat([data["image0"], data["image1"]], dim=0) ) (feat_c0, feat_c1), (feat_f0, feat_f1) = feats_c.split( data["bs"] ), feats_f.split(data["bs"]) else: # handle different input shapes (feat_c0, feat_f0), (feat_c1, feat_f1) = self.backbone( data["image0"] ), self.backbone(data["image1"]) data.update( { "hw0_c": feat_c0.shape[2:], "hw1_c": feat_c1.shape[2:], "hw0_f": feat_f0.shape[2:], "hw1_f": feat_f1.shape[2:], } ) # 2. coarse-level loftr module feat_c0 = rearrange(feat_c0, "n c h w -> n (h w) c") feat_c1 = rearrange(feat_c1, "n c h w -> n (h w) c") mask_c0 = mask_c1 = None # mask is useful in training if "mask0" in data: mask_c0, mask_c1 = data["mask0"].flatten(-2), data["mask1"].flatten(-2) feat_c0, feat_c1, conf_matrix, topic_matrix = self.loftr_coarse( feat_c0, feat_c1, mask_c0, mask_c1 ) data.update({"conf_matrix": conf_matrix, "topic_matrix": topic_matrix}) ###### # 3. match coarse-level self.coarse_matching(data) # 4. fine-level refinement feat_f0_unfold, feat_f1_unfold = self.fine_preprocess( feat_f0, feat_f1, feat_c0.detach(), feat_c1.detach(), data ) if feat_f0_unfold.size(0) != 0: # at least one coarse level predicted feat_f0_unfold, feat_f1_unfold = self.loftr_fine( feat_f0_unfold, feat_f1_unfold ) # 5. match fine-level self.fine_matching(feat_f0_unfold, feat_f1_unfold, data) def load_state_dict(self, state_dict, *args, **kwargs): for k in list(state_dict.keys()): if k.startswith("matcher."): state_dict[k.replace("matcher.", "", 1)] = state_dict.pop(k) return super().load_state_dict(state_dict, *args, **kwargs)