import argparse import multiprocessing import shutil from pathlib import Path from typing import Any, Dict, List, Optional import pycolmap from . import logger from .triangulation import ( OutputCapture, estimation_and_geometric_verification, import_features, import_matches, parse_option_args, ) from .utils.database import COLMAPDatabase def create_empty_db(database_path: Path): if database_path.exists(): logger.warning("The database already exists, deleting it.") database_path.unlink() logger.info("Creating an empty database...") db = COLMAPDatabase.connect(database_path) db.create_tables() db.commit() db.close() def import_images( image_dir: Path, database_path: Path, camera_mode: pycolmap.CameraMode, image_list: Optional[List[str]] = None, options: Optional[Dict[str, Any]] = None, ): logger.info("Importing images into the database...") if options is None: options = {} images = list(image_dir.iterdir()) if len(images) == 0: raise IOError(f"No images found in {image_dir}.") with pycolmap.ostream(): pycolmap.import_images( database_path, image_dir, camera_mode, image_list=image_list or [], options=options, ) def get_image_ids(database_path: Path) -> Dict[str, int]: db = COLMAPDatabase.connect(database_path) images = {} for name, image_id in db.execute("SELECT name, image_id FROM images;"): images[name] = image_id db.close() return images def run_reconstruction( sfm_dir: Path, database_path: Path, image_dir: Path, verbose: bool = False, options: Optional[Dict[str, Any]] = None, ) -> pycolmap.Reconstruction: models_path = sfm_dir / "models" models_path.mkdir(exist_ok=True, parents=True) logger.info("Running 3D reconstruction...") if options is None: options = {} options = {"num_threads": min(multiprocessing.cpu_count(), 16), **options} with OutputCapture(verbose): with pycolmap.ostream(): reconstructions = pycolmap.incremental_mapping( database_path, image_dir, models_path, options=options ) if len(reconstructions) == 0: logger.error("Could not reconstruct any model!") return None logger.info(f"Reconstructed {len(reconstructions)} model(s).") largest_index = None largest_num_images = 0 for index, rec in reconstructions.items(): num_images = rec.num_reg_images() if num_images > largest_num_images: largest_index = index largest_num_images = num_images assert largest_index is not None logger.info( f"Largest model is #{largest_index} " f"with {largest_num_images} images." ) for filename in ["images.bin", "cameras.bin", "points3D.bin"]: if (sfm_dir / filename).exists(): (sfm_dir / filename).unlink() shutil.move( str(models_path / str(largest_index) / filename), str(sfm_dir) ) return reconstructions[largest_index] def main( sfm_dir: Path, image_dir: Path, pairs: Path, features: Path, matches: Path, camera_mode: pycolmap.CameraMode = pycolmap.CameraMode.AUTO, verbose: bool = False, skip_geometric_verification: bool = False, min_match_score: Optional[float] = None, image_list: Optional[List[str]] = None, image_options: Optional[Dict[str, Any]] = None, mapper_options: Optional[Dict[str, Any]] = None, ) -> pycolmap.Reconstruction: assert features.exists(), features assert pairs.exists(), pairs assert matches.exists(), matches sfm_dir.mkdir(parents=True, exist_ok=True) database = sfm_dir / "database.db" create_empty_db(database) import_images(image_dir, database, camera_mode, image_list, image_options) image_ids = get_image_ids(database) import_features(image_ids, database, features) import_matches( image_ids, database, pairs, matches, min_match_score, skip_geometric_verification, ) if not skip_geometric_verification: estimation_and_geometric_verification(database, pairs, verbose) reconstruction = run_reconstruction( sfm_dir, database, image_dir, verbose, mapper_options ) if reconstruction is not None: logger.info( f"Reconstruction statistics:\n{reconstruction.summary()}" + f"\n\tnum_input_images = {len(image_ids)}" ) return reconstruction if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--sfm_dir", type=Path, required=True) parser.add_argument("--image_dir", type=Path, required=True) parser.add_argument("--pairs", type=Path, required=True) parser.add_argument("--features", type=Path, required=True) parser.add_argument("--matches", type=Path, required=True) parser.add_argument( "--camera_mode", type=str, default="AUTO", choices=list(pycolmap.CameraMode.__members__.keys()), ) parser.add_argument("--skip_geometric_verification", action="store_true") parser.add_argument("--min_match_score", type=float) parser.add_argument("--verbose", action="store_true") parser.add_argument( "--image_options", nargs="+", default=[], help="List of key=value from {}".format( pycolmap.ImageReaderOptions().todict() ), ) parser.add_argument( "--mapper_options", nargs="+", default=[], help="List of key=value from {}".format( pycolmap.IncrementalMapperOptions().todict() ), ) args = parser.parse_args().__dict__ image_options = parse_option_args( args.pop("image_options"), pycolmap.ImageReaderOptions() ) mapper_options = parse_option_args( args.pop("mapper_options"), pycolmap.IncrementalMapperOptions() ) main(**args, image_options=image_options, mapper_options=mapper_options)