Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,75 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
+
class TextGenerator:
|
6 |
+
def __init__(self, model_name, device='cpu'):
|
7 |
+
self.device = device
|
8 |
+
self.load_model(model_name)
|
9 |
|
10 |
+
def load_model(self, model_name):
|
11 |
+
# Load model and tokenizer from Hugging Face
|
12 |
+
print("Loading model and tokenizer...")
|
13 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
+
self.model.to(self.device)
|
16 |
+
print("Model loaded successfully!")
|
17 |
|
18 |
+
def generate_text(self, prompt, max_length=100, temperature=0.7, top_k=50, top_p=0.9):
|
19 |
+
# Tokenize input
|
20 |
+
input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
|
21 |
+
|
22 |
+
# Generate text
|
23 |
+
with torch.no_grad():
|
24 |
+
output_ids = self.model.generate(
|
25 |
+
input_ids,
|
26 |
+
max_length=max_length,
|
27 |
+
temperature=temperature,
|
28 |
+
top_k=top_k,
|
29 |
+
top_p=top_p,
|
30 |
+
do_sample=True,
|
31 |
+
pad_token_id=self.tokenizer.eos_token_id
|
32 |
+
)
|
33 |
+
|
34 |
+
# Decode output tokens
|
35 |
+
generated_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
36 |
+
return generated_text
|
37 |
|
38 |
+
def create_gradio_interface(model_name):
|
39 |
+
generator = TextGenerator(model_name)
|
|
|
|
|
|
|
40 |
|
41 |
+
def generate(prompt, max_length, temperature, top_k, top_p):
|
42 |
+
try:
|
43 |
+
return generator.generate_text(
|
44 |
+
prompt=prompt,
|
45 |
+
max_length=max_length,
|
46 |
+
temperature=temperature,
|
47 |
+
top_k=top_k,
|
48 |
+
top_p=top_p
|
49 |
+
)
|
50 |
+
except Exception as e:
|
51 |
+
return f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Define Gradio interface
|
54 |
+
interface = gr.Interface(
|
55 |
+
fn=generate,
|
56 |
+
inputs=[
|
57 |
+
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
|
58 |
+
gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Maximum Length"),
|
59 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
60 |
+
gr.Slider(minimum=0, maximum=100, value=50, step=5, label="Top-k"),
|
61 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p"),
|
62 |
+
],
|
63 |
+
outputs=gr.Textbox(label="Generated Text"),
|
64 |
+
title="Reality123b/Xylaria-1.4-Senoa-Test",
|
65 |
+
description="Generate text using the Reality123b/Xylaria-1.4-Senoa-Test model optimized for CPU usage.",
|
66 |
+
)
|
67 |
+
return interface
|
68 |
|
69 |
if __name__ == "__main__":
|
70 |
+
# Use the model from Hugging Face
|
71 |
+
model_name = "Reality123b/Xylaria-1.4-Senoa-Test"
|
72 |
+
|
73 |
+
# Create and launch Gradio interface
|
74 |
+
interface = create_gradio_interface(model_name)
|
75 |
+
interface.launch(share=True)
|