Reality123b commited on
Commit
a3c91ee
·
verified ·
1 Parent(s): 2e6f202

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -55
app.py CHANGED
@@ -1,64 +1,75 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
4
 
5
+ class TextGenerator:
6
+ def __init__(self, model_name, device='cpu'):
7
+ self.device = device
8
+ self.load_model(model_name)
9
 
10
+ def load_model(self, model_name):
11
+ # Load model and tokenizer from Hugging Face
12
+ print("Loading model and tokenizer...")
13
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name)
14
+ self.model = AutoModelForCausalLM.from_pretrained(model_name)
15
+ self.model.to(self.device)
16
+ print("Model loaded successfully!")
17
 
18
+ def generate_text(self, prompt, max_length=100, temperature=0.7, top_k=50, top_p=0.9):
19
+ # Tokenize input
20
+ input_ids = self.tokenizer.encode(prompt, return_tensors="pt").to(self.device)
21
+
22
+ # Generate text
23
+ with torch.no_grad():
24
+ output_ids = self.model.generate(
25
+ input_ids,
26
+ max_length=max_length,
27
+ temperature=temperature,
28
+ top_k=top_k,
29
+ top_p=top_p,
30
+ do_sample=True,
31
+ pad_token_id=self.tokenizer.eos_token_id
32
+ )
33
+
34
+ # Decode output tokens
35
+ generated_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
36
+ return generated_text
37
 
38
+ def create_gradio_interface(model_name):
39
+ generator = TextGenerator(model_name)
 
 
 
40
 
41
+ def generate(prompt, max_length, temperature, top_k, top_p):
42
+ try:
43
+ return generator.generate_text(
44
+ prompt=prompt,
45
+ max_length=max_length,
46
+ temperature=temperature,
47
+ top_k=top_k,
48
+ top_p=top_p
49
+ )
50
+ except Exception as e:
51
+ return f"Error: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ # Define Gradio interface
54
+ interface = gr.Interface(
55
+ fn=generate,
56
+ inputs=[
57
+ gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
58
+ gr.Slider(minimum=10, maximum=500, value=100, step=10, label="Maximum Length"),
59
+ gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
60
+ gr.Slider(minimum=0, maximum=100, value=50, step=5, label="Top-k"),
61
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p"),
62
+ ],
63
+ outputs=gr.Textbox(label="Generated Text"),
64
+ title="Reality123b/Xylaria-1.4-Senoa-Test",
65
+ description="Generate text using the Reality123b/Xylaria-1.4-Senoa-Test model optimized for CPU usage.",
66
+ )
67
+ return interface
68
 
69
  if __name__ == "__main__":
70
+ # Use the model from Hugging Face
71
+ model_name = "Reality123b/Xylaria-1.4-Senoa-Test"
72
+
73
+ # Create and launch Gradio interface
74
+ interface = create_gradio_interface(model_name)
75
+ interface.launch(share=True)