import streamlit as st from PIL import Image import tensorflow as tf import numpy as np from keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model import os # Load custom CTC Layer if necessary class CTCLayer(tf.keras.layers.Layer): def __init__(self, name=None): super().__init__(name=name) self.loss_fn = tf.keras.backend.ctc_batch_cost def call(self, y_true, y_pred, input_length, label_length): # Compute the training-time loss value and add it # to the layer using `self.add_loss()`. loss = self.loss_fn(y_true, y_pred, input_length, label_length) self.add_loss(loss) # On test time, just return the computed loss return loss # Load the trained model with a custom CTC layer if needed @st.cache_resource def load_model(): model_path = "model_ocr.h5" # Update with the correct model file path model = tf.keras.models.load_model(model_path, custom_objects={"CTCLayer": CTCLayer}) return model model = load_model() # Menambahkan definisi img_width dan img_height img_width, img_height = 200, 50 # Ganti sesuai dimensi input gambar yang digunakan oleh model Anda # Definisikan max_length (misalnya panjang label maksimal) max_length = 50 # Ganti sesuai dengan panjang label teks maksimal yang diinginkan # Pemetaan karakter yang mencakup huruf (kapital dan kecil) serta angka characters = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] # Preprocessing gambar untuk memastikan bahwa gambar sesuai dengan input yang diinginkan def prepare_image(img): # Resize gambar ke ukuran yang diinginkan img = img.resize((img_width, img_height)) # Konversi ke array dan normalisasi gambar img_array = img_to_array(img) / 255.0 # Normalisasi # Tambahkan dimensi batch dan sesuaikan dengan dimensi yang diinginkan model img_array = np.expand_dims(img_array, axis=0) # Batch size 1 img_array = np.transpose(img_array, (0, 2, 1, 3)) # Untuk model dengan dimensi (batch, width, height, channels) return img_array def decode_batch_predictions(pred): pred_texts = [] # Loop untuk setiap prediksi dalam batch for i in range(pred.shape[0]): # Mengambil argmax untuk mendapatkan indeks dengan probabilitas tertinggi pred_indices = np.argmax(pred[i], axis=-1) # Ambil argmax untuk setiap karakter # Memetakan indeks ke karakter (mengecualikan padding dan placeholder) pred_text = ''.join([characters[int(c)] for c in pred_indices if c not in [-1, 0]]) # Menambahkan hasil teks untuk batch ke pred_texts pred_texts.append(pred_text) return pred_texts def run(): st.title("OCR Model Deployment") # Upload image img_file = st.file_uploader("Choose an Image", type=["jpg", "png"]) if img_file is not None: img = Image.open(img_file).convert('L') # Convert to grayscale if needed st.image(img, use_column_width=True) # Save the uploaded image upload_dir = './upload_images/' os.makedirs(upload_dir, exist_ok=True) save_image_path = os.path.join(upload_dir, img_file.name) with open(save_image_path, "wb") as f: f.write(img_file.getbuffer()) # Process the image and make prediction pred_texts = prepare_image(img) # Show predicted text st.success(f"**Predicted Text: {pred_texts[0]}**") if __name__ == "__main__": run()