import streamlit as st import pandas as pd import joblib st.header('FTDS Model Deployment') st.write(""" Created by FTDS Curriculum Team Use the sidebar to select input features. """) @st.cache def fetch_data(): df = pd.read_csv('https://raw.githubusercontent.com/ardhiraka/PFDS_sources/master/campus.csv') return df df = fetch_data() st.write(df) st.sidebar.header('User Input Features') def user_input(): gender = st.sidebar.selectbox('Gender', df['gender'].unique()) ssc = st.sidebar.number_input('Secondary School Points', value=67.00) hsc = st.sidebar.number_input('High School Points', 0.0, value=91.0) hsc_s = st.sidebar.selectbox('High School Spec', df['hsc_s'].unique()) degree_p = st.sidebar.number_input('Degree Points', 0.0, value=58.0) degree_t = st.sidebar.selectbox('Degree Spec', df['degree_t'].unique()) workex = st.sidebar.selectbox('Work Experience?', df['workex'].unique()) etest_p = st.sidebar.number_input('Etest Points', 0.0, value=78.00) spec = st.sidebar.selectbox('Specialization', df['specialisation'].unique()) mba_p = st.sidebar.number_input('MBA Points', 0.0, value=54.55) data = { 'gender': gender, 'ssc_p': ssc, 'hsc_p': hsc, 'hsc_s': hsc_s, 'degree_p': degree_p, 'degree_t': degree_t, 'workex': workex, 'etest_p': etest_p, 'specialisation':spec, 'mba_p': mba_p } features = pd.DataFrame(data, index=[0]) return features input = user_input() st.subheader('User Input') st.write(input) load_model = joblib.load("my_model.pkl") prediction = load_model.predict(input) if prediction == 1: prediction = 'Placed' else: prediction = 'Not Placed' st.write('Based on user input, the placement model predicted: ') st.write(prediction)