File size: 17,382 Bytes
8771ea4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import ldm_patched.modules.supported_models
import ldm_patched.modules.supported_models_base

def count_blocks(state_dict_keys, prefix_string):
    count = 0
    while True:
        c = False
        for k in state_dict_keys:
            if k.startswith(prefix_string.format(count)):
                c = True
                break
        if c == False:
            break
        count += 1
    return count

def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
    context_dim = None
    use_linear_in_transformer = False

    transformer_prefix = prefix + "1.transformer_blocks."
    transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys)))
    if len(transformer_keys) > 0:
        last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}')
        context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
        use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
        time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict
        return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack
    return None

def detect_unet_config(state_dict, key_prefix, dtype):
    state_dict_keys = list(state_dict.keys())

    unet_config = {
        "use_checkpoint": False,
        "image_size": 32,
        "use_spatial_transformer": True,
        "legacy": False
    }

    y_input = '{}label_emb.0.0.weight'.format(key_prefix)
    if y_input in state_dict_keys:
        unet_config["num_classes"] = "sequential"
        unet_config["adm_in_channels"] = state_dict[y_input].shape[1]
    else:
        unet_config["adm_in_channels"] = None

    unet_config["dtype"] = dtype
    model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0]
    in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1]

    out_key = '{}out.2.weight'.format(key_prefix)
    if out_key in state_dict:
        out_channels = state_dict[out_key].shape[0]
    else:
        out_channels = 4

    num_res_blocks = []
    channel_mult = []
    attention_resolutions = []
    transformer_depth = []
    transformer_depth_output = []
    context_dim = None
    use_linear_in_transformer = False

    video_model = False

    current_res = 1
    count = 0

    last_res_blocks = 0
    last_channel_mult = 0

    input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.')
    for count in range(input_block_count):
        prefix = '{}input_blocks.{}.'.format(key_prefix, count)
        prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1)

        block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys)))
        if len(block_keys) == 0:
            break

        block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys)))

        if "{}0.op.weight".format(prefix) in block_keys: #new layer
            num_res_blocks.append(last_res_blocks)
            channel_mult.append(last_channel_mult)

            current_res *= 2
            last_res_blocks = 0
            last_channel_mult = 0
            out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
            if out is not None:
                transformer_depth_output.append(out[0])
            else:
                transformer_depth_output.append(0)
        else:
            res_block_prefix = "{}0.in_layers.0.weight".format(prefix)
            if res_block_prefix in block_keys:
                last_res_blocks += 1
                last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels

                out = calculate_transformer_depth(prefix, state_dict_keys, state_dict)
                if out is not None:
                    transformer_depth.append(out[0])
                    if context_dim is None:
                        context_dim = out[1]
                        use_linear_in_transformer = out[2]
                        video_model = out[3]
                else:
                    transformer_depth.append(0)

            res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output)
            if res_block_prefix in block_keys_output:
                out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict)
                if out is not None:
                    transformer_depth_output.append(out[0])
                else:
                    transformer_depth_output.append(0)


    num_res_blocks.append(last_res_blocks)
    channel_mult.append(last_channel_mult)
    if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys:
        transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}')
    else:
        transformer_depth_middle = -1

    unet_config["in_channels"] = in_channels
    unet_config["out_channels"] = out_channels
    unet_config["model_channels"] = model_channels
    unet_config["num_res_blocks"] = num_res_blocks
    unet_config["transformer_depth"] = transformer_depth
    unet_config["transformer_depth_output"] = transformer_depth_output
    unet_config["channel_mult"] = channel_mult
    unet_config["transformer_depth_middle"] = transformer_depth_middle
    unet_config['use_linear_in_transformer'] = use_linear_in_transformer
    unet_config["context_dim"] = context_dim

    if video_model:
        unet_config["extra_ff_mix_layer"] = True
        unet_config["use_spatial_context"] = True
        unet_config["merge_strategy"] = "learned_with_images"
        unet_config["merge_factor"] = 0.0
        unet_config["video_kernel_size"] = [3, 1, 1]
        unet_config["use_temporal_resblock"] = True
        unet_config["use_temporal_attention"] = True
    else:
        unet_config["use_temporal_resblock"] = False
        unet_config["use_temporal_attention"] = False

    return unet_config

def model_config_from_unet_config(unet_config):
    for model_config in ldm_patched.modules.supported_models.models:
        if model_config.matches(unet_config):
            return model_config(unet_config)

    print("no match", unet_config)
    return None

def model_config_from_unet(state_dict, unet_key_prefix, dtype, use_base_if_no_match=False):
    unet_config = detect_unet_config(state_dict, unet_key_prefix, dtype)
    model_config = model_config_from_unet_config(unet_config)
    if model_config is None and use_base_if_no_match:
        return ldm_patched.modules.supported_models_base.BASE(unet_config)
    else:
        return model_config

def convert_config(unet_config):
    new_config = unet_config.copy()
    num_res_blocks = new_config.get("num_res_blocks", None)
    channel_mult = new_config.get("channel_mult", None)

    if isinstance(num_res_blocks, int):
        num_res_blocks = len(channel_mult) * [num_res_blocks]

    if "attention_resolutions" in new_config:
        attention_resolutions = new_config.pop("attention_resolutions")
        transformer_depth = new_config.get("transformer_depth", None)
        transformer_depth_middle = new_config.get("transformer_depth_middle", None)

        if isinstance(transformer_depth, int):
            transformer_depth = len(channel_mult) * [transformer_depth]
        if transformer_depth_middle is None:
            transformer_depth_middle =  transformer_depth[-1]
        t_in = []
        t_out = []
        s = 1
        for i in range(len(num_res_blocks)):
            res = num_res_blocks[i]
            d = 0
            if s in attention_resolutions:
                d = transformer_depth[i]

            t_in += [d] * res
            t_out += [d] * (res + 1)
            s *= 2
        transformer_depth = t_in
        transformer_depth_output = t_out
        new_config["transformer_depth"] = t_in
        new_config["transformer_depth_output"] = t_out
        new_config["transformer_depth_middle"] = transformer_depth_middle

    new_config["num_res_blocks"] = num_res_blocks
    return new_config


def unet_config_from_diffusers_unet(state_dict, dtype):
    match = {}
    transformer_depth = []

    attn_res = 1
    down_blocks = count_blocks(state_dict, "down_blocks.{}")
    for i in range(down_blocks):
        attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}')
        for ab in range(attn_blocks):
            transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}')
            transformer_depth.append(transformer_count)
            if transformer_count > 0:
                match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1]

        attn_res *= 2
        if attn_blocks == 0:
            transformer_depth.append(0)
            transformer_depth.append(0)

    match["transformer_depth"] = transformer_depth

    match["model_channels"] = state_dict["conv_in.weight"].shape[0]
    match["in_channels"] = state_dict["conv_in.weight"].shape[1]
    match["adm_in_channels"] = None
    if "class_embedding.linear_1.weight" in state_dict:
        match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1]
    elif "add_embedding.linear_1.weight" in state_dict:
        match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1]

    SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
            'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
            'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
            'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384,
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4,
                    'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}

    SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
            'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2],
            'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True,
            'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
            'use_temporal_attention': False, 'use_temporal_resblock': False}

    SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
                    'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}

    SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                    'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                    'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1,
                    'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
                    'use_temporal_attention': False, 'use_temporal_resblock': False}

    SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None,
            'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
            'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
            'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
            'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                     'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                     'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1,
                     'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1],
                     'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                       'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
                       'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0,
                       'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0],
                       'use_temporal_attention': False, 'use_temporal_resblock': False}

    SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
                              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320,
                              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10,
                              'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10],
                              'use_temporal_attention': False, 'use_temporal_resblock': False}

    SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4],
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}

    Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
              'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320,
              'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2],
              'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64,
              'use_temporal_attention': False, 'use_temporal_resblock': False}

    supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega]

    for unet_config in supported_models:
        matches = True
        for k in match:
            if match[k] != unet_config[k]:
                matches = False
                break
        if matches:
            return convert_config(unet_config)
    return None

def model_config_from_diffusers_unet(state_dict, dtype):
    unet_config = unet_config_from_diffusers_unet(state_dict, dtype)
    if unet_config is not None:
        return model_config_from_unet_config(unet_config)
    return None